TS
Tectonics and Structural Geology

IPGP

Meeting Plate Tectonics – Jean-Philippe Avouac

Meeting Plate Tectonics – Jean-Philippe Avouac

These blogposts present interviews with outstanding scientists that bloomed and shape the theory that revolutionised Earth Sciences — Plate Tectonics. Get to know them, learn from their experience, discover the pieces of advice they share and find out where the newest challenges lie!


Meeting Jean-Philippe Avouac


Prof. Jean-Philippe Avouac initially studied mathematics and physics during his undergraduate and graduate degrees. Later he got more inclined towards geophysics and then he discovered Earth Sciences. During his Ph.D. at the Institut de Physique du Globe de Paris, advised by Paul Tapponnier, he immersed himself in geology and tectonic geomorphology. Currently, Jean-Philippe Avouac is a Professor of Geology at the California Institute of Technology.

Like living organisms, earthquakes have a life cycle: they nucleate, grow and arrest. There can be some lineage but each earthquake is a different being.

Fieldwork along the Kali Gandaki (Nepal) in 1999. Credit: Barbara Avouac

Where lies your main research interest?

I study crustal dynamics: How the crust is deforming as a result of earthquakes, but also as a result of viscous processes. I study the process of stress accumulation on faults, the release of this stress by earthquakes, as well as how earthquakes and other mechanisms of deformation are contributing to building the topography and geological structures in the long run.

 

How would you describe your approach and methodology?

In my group, we develop techniques to measure crustal deformation using in particular remote sensing and seismology. We were using radar images initially, and we have moved toward using more optical images with time and also GPS data… We try to reproduce the observations (geodetic deformation, kinematic models of seismic ruptures, gravity field…) using dynamic models to determine what are the forces and rheologies needed.

 

What would you say is the favorite aspect of your research?

What I like most about my research is mentoring Ph.D. students and postdocs. I love matching their skills with good problems, problems that will be attractive to them and that will resonate with the currently hot questions in Earth Sciences. I really love doing that.

The other thing I love is to use what I learned as I student (maths and physics) to answer science questions arising from natural observations. I love that part when you look at nature, you observe something and try to measure it quantitatively and then you try to explain the observation with dynamic models. I really enjoy going back and forth between observations and modelling. And the field! I really like being in the field… This is an aspect of the job that really attracted me initially.

We built from what other researchers had done before, but we reached quite different conclusions […] that’s exciting!

Jean-Phillipe Avouac leading a field excursion in the Dzungar basin, 2006. Credit: Aurelia Hubert-Ferrari

 

Why is your research relevant? What are the possible real-world applications?

A significant fraction of my research is relevant to seismic hazards. After my Ph.D., I worked for the Commissariat à l’Energie Atomique (CEA) for 10 years. I was conducting seismic hazard assessment studies for nuclear facilities. So, I have been exposed to the applied side of earthquake science and I like that some of the research we do in my group can help to improve the way we do seismic hazard assessments.

But what I really want to say is that I do not think relevance should drive academic research. In that regard, I should say that I don’t like much the way the funding system works today. I think there is too much emphasis on relevance to society. The idea that you start from stating problems of societal relevance, and only then see what kind of research we can do to solve this problem is not a good approach, in my opinion. I don’t think this is the way important scientific discoveries are made. You make discoveries by being curious, by observing nature with an open mind, by exploring new ideas and coming up with new concepts, or by observing something that is not explained in the current theoretical framework that we have and then you make use of the knowledge that you build after looking at these problems. There is no way you can clearly anticipate where the joyful exploration of an intriguing idea or observation can lead but we know from experience that the society benefits from curious scientific exploration. So, although I think there is relevance in what I am doing, I do not think that, in general, relevance to society should be driving academic research.

 

An outcome of Jean-Phillipe Ph.D Thesis, later published in Kinematic model of active deformation in Central Asia (Avouac and Tapponnier, GRL – 1993; doi: https://doi.org/10.1029/93GL00128).

I do not think relevance to society should drive academic research

What would you say is the main problem that you solved during your most recent project?

People in my group work on many different projects that are all very exciting to me. I’m going to mention just one project though because I can not possibly list them all.

We have done a lot of work in the past to develop techniques to invert geodetic measurements for fault slip at depth. A postdoc and a graduate students in my group have moved on to improve the technique and use it to document slow slip events in Cascadia over the last 15 years. That was a daunting work but their hard work and perseverance have really paid back. The end result is amazing! We see how the slow slip event initiate, propagate, arrest, trigger one another… We built from what other researchers had done before us, but we reached quite different conclusions given that we now have a more complete view of the behaviour of the system –that’s exciting! I anticipate that we are going to learn a lot about the dynamics of slow-slip events, and maybe it will have important implications for regular earthquakes!

What do you consider to be your biggest academic achievement?

The research for which my group is probably best known is that we have done in the Himalaya. In particular, we have built a model of the seismic cycle that explains the observations that we have from seismology, geodesy, geomorphology and geology. We worked a lot on the Himalaya, in part because I love mountains, but also because it is a very unique setting to study orogenic processes which are still active today. There is really no better place where you can get geological constraints on the thermal and structural evolution of the range. There is a lot of erosion and it has been going on for a long time, so the rocks that have been brought to the surface have recorded the thermal and deformation history over tens of million years. Our research has helped understand how the Himalaya has formed as a result of seismic and aseismic deformation, and I think it has yielded important insight on orogenic processes and the seismic cycle in general.

By the way, I don’t mean that earthquakes are periodic. Like living organisms, earthquakes have a life cycle: they nucleate, grow and arrest. There can be some lineage but each earthquake is a different being.

Animation showing the process of stress build up and release associated to earthquakes along the Main Himalayan Thrust fault, along which India is thrust beneath the Himalaya and Tibet. Credit: Jean-Philippe Avouac, Tim Pyle and Kristel Chanard.

We tend to build walls between disciplines […] We would not have been able to discover plate tectonics without a deep cross-disciplinary dialogue

What do you think are the biggest challenges right now in your field?

As I mentioned before, the funding system is an issue. Funding agencies are clearly making a big mistake in prioritizing social relevance as a criterion to evaluate proposals. Aside from that, the challenge that we have in the Earth Sciences is that we tend to build walls between disciplines. Specialization is a natural drift, and you can make a very successful career in a particular field pushing further a particular analytical or modelling technique. Also, it is easier to get funding for what you are known to be good at. As a result, walls between disciplines are building with time. The vocabulary is evolving in each individual discipline and it is increasingly difficult to make major advancements that can bridge different disciplines. In my research, I try to navigate from one discipline to the other… but it is a challenge –while it can be key to make significant discoveries, it takes time and effort. There are fewer and fewer people making a carrier this way. It can be dangerous because of a dilution effect, but at some point, it is needed. Look at plate tectonics for example: it happened because of advances in different disciplines but most importantly because some scientists were aware of these advances and were able to connect them and derive a coherent global framework. We would not have been able to discover plate tectonics without a deep cross-disciplinary dialogue.

Another challenge is that nowadays we have a lot more data than we used to have. This is both an opportunity and a threat. There is a trend to produce more and more publications, that look very solid because they use a lot of data, but that are in fact very incremental. More of the same is not necessarily advancing knowledge at a fundamental level. We have to be imaginative with regard to how to process the increasing flux of data, but it should not come at the cost of being imaginative with regard to what they mean.

I do not like the way the funding system works today

When you were in the early stages of our career, what were your expectations? Did you always see yourself staying in academia?

After my Ph.D. I did not stay in academia. But even when outside academia, I kept doing research, because I had an appetite for it and was working in an environment where scientific curiosity was valued, even if science was not the main objective. Although I was not unhappy at all outside academia, I decided to go back to it since I found it more exciting for myself: I like to solve scientific questions but there is not so much I could solve without the help of students and postdocs. I didn’t consider staying in academia after my PhD because there were sides of the academic life I did not feel comfortable with… I was finding people in academia to be a bit… difficult sometimes, with big egos and not so open minded. Also, we are a very conservative community. There’s a reason for that, for we as scientists have to be sceptical and to push back new ideas and new observations. I guess I have now become now one of those crazy and conservative academic guys (laughs)!

 

Mapping and sampling Holocene terraces abandoned by rapid climate-driven incision in the Tianshan. Credit: Luca Malatesta

If you have a new idea… you will probably have a hard time

What advice would you like to share with Early Career Students?

My first advice is to be aware of the important questions that we should try to solve. Not because they are relevant but because they are interesting and because they are timely, given the tools and data that we have access to. Being aware of the really big questions is important because we tend to forget them sometimes as we become more specialized. And be also aware of the new techniques available, especially those that you could draw from other fields; computer science or medical imagery for example… It is important to be curious and see what is happening in other fields so that you can transfer new ideas and new techniques to your own field and give a try at answering big science questions.

Be curious, be adventurous. Take risks. Try things that might not work. You might be losing your time but it is also an opportunity to make real fundamental advancements. You can make a career by increments, but I think it is not as rewarding as taking risks and really solving a difficult problem.

Follow your own dreams and don’t be intimidated by peer pressure. If you put a new idea on the table, a really new one, first, you will probably have a hard time expressing it clearly… And second, peers will most probably push back, as they should. So do not be intimidated, believe in your ideas, and keep adjusting and pushing them forward. I see too many times students or postdocs who meltdown and get discouraged if they receive a negative comment after a presentation… – I would say, that could, in fact, be a good sign! You may be doing something different and maybe people are not understanding because there is something disturbing and really new!

 

Jean-Phillipe Avouac. Credit: Trish Reda.

 

Interview conducted by David Fernández-Blanco

Meeting Plate Tectonics – Francis Albarède

Meeting Plate Tectonics – Francis Albarède

These blogposts present interviews with outstanding scientists that bloomed and shape the theory that revolutionised Earth Sciences — Plate Tectonics. Get to know them, learn from their experience, discover the pieces of advice they share and find out where the newest challenges lie!


Meeting Francis Albarède


Francis Albarède started his career as an undergraduate student in Natural Sciences at the University of Montpellier in southern France. He moved to Paris to get a PhD in Geochemistry, supervised by Claude Allegre, at the Institut de Physique de Globe de Paris (IPGP). After his PhD he remained at IPGP as researcher and teacher. He then moved to Caltech, where he stayed for two years. The National School of Geology in Nancy, France, offered him a professorship, a position he happily fulfilled for 12 years. In 1991 he switched to the Ecole Normale Superieure in Lyon, France where he holds a director position of the department of earth and life sciences until today.

 

Hi Francis, could you briefly introduce your research interests and methods?

Francis Albarède. Credit: Francis Albarède.

Sure. I’m a geochemist, and I apply geochemistry to understand mantle dynamics and the evolution of the mantle. I also use geochemistry to investigate other planets and work on ocean dynamics. Besides geochemistry, I also use isotopes and trace elements to understand the mantle dynamics and I use models to predict the complexness of magmatic and oceanic processes. Besides earth scientific questions, my methods can be used in archaeological problems or medical issues. My interests are mainly within the field of earth sciences, but I sometimes venture to different fields of research.

Interdisciplinary research needs to be enhanced.

You have quite an extensive career. What do you consider your biggest accomplishment in your field?

The introduction of geochemical modelling I consider one my most significant achievements. And of course, the introduction of the MC-ICP Mass Spectrometry in the mid-’90s within geosciences had tremendous success. At the time it was a new technique and it has become one of the most dominant geochemical tools in many different laboratories around the world. In geodynamics, the idea that continents grow from the head of superplumes was also successful.

Besides these big accomplishment, do you have personal projects too?

Yes, I do have a couple fun projects of my own. They often have to do with introducing new data. For example, I am currently working on using a panel of isotopes (silver, lead, copper) to understand the origin of money.

Science is actually quite hard work.

You have seen many changes in your field. What do you consider one of the biggest challenges in your field nowadays?

Interdisciplinary research needs to be enhanced. The geochemists are good at their own job, and so are the geophysicists. But we need more people that are knowledgeable in both geochemistry and geophysics, a gap that is difficult to bridge. In addition, few scientists ask the right questions. Always ask yourself why other people should care about your own research.

A two-stage history of He in the marble-cake mantle made of fertile (e.g., U- and Th-rich “pyroxenite” in beige) and refractory (e.g., U- and Th-poor “dunite” in green) rocks. Francis Albarède, 2008. Rogue Mantle Helium and Neon, Science, Vol. 319, Issue 5865, pp. 943-945, DOI: 10.1126/science.1150060

 

When you were at the early stages of your career, what were your expectations?

I never expected to be successful at an international level, but it happened anyway. I was craving to make great discoveries, and, even though the road to it was very bumpy, it happened, at least to the best of my capacities.

The most important is to think out of the box.

What is the most valuable advice you have received in your career?

As an early career scientist, I was very arrogant, even more than today. I received the advice, mainly from foreigners, to be more rigorous or demanding to myself. I was told that science is not just a quick effort, or that you do not get important results with a snap of your fingers. It is actually quite hard work. Claude Allegre, my PhD supervisor predicted I would always be a student and sure enough, I still am a student. I am not sure if I became less arrogant, but I definitely took his advice to work harder and to become more rigorous.

So, as the last question, do you have any advice for Early Career Scientists that are aiming for a career in science?

An Early Career Scientist needs to be exposed to other groups and individuals, preferably those who think differently. Perk is the great strength of being young but the danger is to reinvent the wheel. Do not think that something understood 50 years ago is necessarily obsolete. The most important is to think out of the box. This is not an easy thing to do, but if you manage it will make you a different scientist and therefore much more valuable to the community. Being scholarly will multiply and enlarge your sources of information. Read a lot, cultivate your memory, and most of all, have faith in your own capacities.

 

Francis Albarède. Credit: Société Française d’Exobiologie.

Interview conducted by Anouk Beniest

Meeting Plate Tectonics – Anne Davaille

Meeting Plate Tectonics – Anne Davaille

These blogposts present interviews with outstanding scientists that bloomed and shape the theory that revolutionised Earth Sciences — Plate Tectonics. Get to know them, learn from their experience, discover the pieces of advice they share and find out where the newest challenges lie!


Meeting Anne Davaille


Anne Davaille majored in Physics and continued with a PhD in Theoretical Physics of Fluids, jointly at the University Pierre et Marie Curie and the Institut de Physique du Globe de Paris (IPGP). She investigates convection in strongly temperature-dependent fluids. After her PhD, she went to Yale for a postdoc and she currently holds a CNRS-position at the FAST Laboratory of University Paris-Sud, France.

Research is ideas plus craftmanship. It should be fun and you have to enjoy it to do it.

Anne Davaille. Credit: Anne Davaille.

Anne, what are your research interests and what methods do you use for your research?

Fluid mechanics is my main research area. I study convection in complex fluids, and I use this framework to understand mantle convection and the convective evolution and cooling of planets. My main approach is through laboratory experiments. But then I use and/or build some theory to interpret the experimental results, to derive a physical understanding, and finally to make inferences for geodynamics. All the way, numerics are also involved, to treat the experimental results, or to quantitatively apply the results to planets.

 

No matter what fancy stuff you do, if your data is not good, you are losing on what you are going to get

You have significantly advanced fluid dynamics within the geosciences. Up until now, what do you consider your biggest scientific achievement?

It is probably the works that we did on thermo-chemical plumes in two-layer convection models. We showed that convection in a mantle heterogeneous in density and viscosity could produce several types of plumes, and therefore several types of hotspots. More recently, we have been able to observe different ways of subduction initiation from convection in complex fluids. Plume-induced subduction could be occurring on Venus right now, and might have been important in the Archean Earth. On the side, I am also very happy with the techniques we developed to measure simultaneously and in situ the temperature and velocity fields in the experiments. It really helped us to push lab experiments forward and get a quantitative understanding of the processes we observed.

Different types of plumes and hotspots, depending on the presence of density heterogeneities in the mantle. From Davaille, Nature, 402, 756-760, 1999; and Davaille, Girard & Le Bars, EPSL, 203, 621-634, 2002.

 

After all the time you have spent in science, you have seen many questions answered and more questions rise. What is the biggest challenge in your field that we face today?

Until now, we still have not solved the question ‘why do we have plate tectonics?’ from a physical point of view. On what scale do we need to look for that answer? Grain scale? Or meso-scale, since the lithosphere is quite heterogeneous (e.g. faults, dikes,…)? To get plate tectonic behavior, and therefore the strong localization of deformation, we need a non-Newtonian rheology. From my experience, fluids presenting this particular behaviour are very often mixtures, and their effective behaviour on the large scale can be quite different from their local microscopic behaviour. Moreover, the history of this structure can also strongly influence the large-scale behaviour. With the theoretical understanding we have today, we still cannot model well these behaviours, and therefore answer the plate-tectonics question. I don’t know if we shalll find the answer in theory first, I don’t think that is necessary. It will require most probably a mix of theory, numerics, and data, both experimental (where you can observe and measure all the scales, from the grain to convection) and geological (the “field truth”). Once we do have that answer, we shall gain a better understanding of the other planets and satellites as well.

Plume-induced subduction obtained in FAST laboratory in a climatic chamber. From Davaille, Smrekar & Tomlinson, Nature Geosc., 10, 349-355, 2017.

The one thing we really should stop doing is having this frantic will to publish

Your field of expertise has changed over the years. Is there something you would still like to change?

Oh yes, there are some things I would like to change. The one thing we really should stop doing is having this frantic will to publish. It is an extremely bad habit and it does not generate good research. Especially for the young people that still need to develop ideas and skills, they need time to think and make mistakes, which is not possible with the current mindset of fast publishing. Fast publishing is not beautiful, nor efficient for creative research. Even though the world wants things always faster, doing it faster is not human. We should stop this. What I find the most important is that my work should be strong enough so that people understand what I did and can use this to build on it and move further. For this we need time.

Different regimes of convection in strongly temperature-dependent fluids as a function of the viscosity ratio and the intensity of convection (Rayleigh number). The temperature structure in the sugar syrups is visualized by Thermochromic Liquid Crystals. From Androvandi, Davaille, Liamre, Fouquier & Marais, Phys. Earth Planet. Int., 188, 132-141, 2011.

 

When you were in the Early Stages of our career, what were your expectations for your future?

When I was 7 years old, I learned about plate tectonics. Later, the operation FAMOUS was happening and at this young age I found that fantastic and I wanted to know more. That was one of the reasons why I went into physics. I think that during my career I have been very lucky. Once I got my degree, I thought that before getting a job, I wanted to do a PhD in a very specific topic ‘Convection in complex fluids and planets’. After that we would see. I did not really have any expectations, but I thought, if I can do it maybe it will work and that would be great. Somehow it worked and so I continued working in it, and it is still great fun!

You have to be very demanding, very rigorous if you want to succeed

The last question for today’s Early Career Scientists: what advice would you like to give the ECS that would like to stay in science?

Well, first I think that research is ideas plus craftmanship. It should be fun and you have to enjoy it to do it. But craftmanship is demanding. I have a small anecdote here. I once did an internship at Schlumberger. I worked with experiments and my supervisor at the time told me ‘if you put shit in, -(meaning noise)-, you will get shit out’. My advice would therefore be that no matter what fancy stuff you do, if your data is not good, you are losing on what you are going to get. So for experimental or numerical modelling, if you are not demanding, or only short-term, you may get away with it for a while, but on the long run, you will not last. You have to be very demanding, very rigorous. I think that’s the best way to succeed.

 

Anne Davaille. Credit: Anne Davaille.

Interview conducted by Anouk Beniest

Meeting Plate Tectonics – Mathilde Cannat

Meeting Plate Tectonics – Mathilde Cannat

These blogposts present interviews with outstanding scientists that bloomed and shape the theory that revolutionised Earth Sciences — Plate Tectonics. Get to know them, learn from their experience, discover the pieces of advice they share and find out where the newest challenges lie!


Meeting Mathilde Cannat


Mathilde Cannat started her career at the early age of 26 when she obtained her Doctorate in Geology at the University of Nantes, France. After a PostDoc at Durham University, England, she took a position at the National Center of Scientific Research (CNRS). She researched at the University Paris 6 since 1992 and obtained her present position at the Institut de Physique du Globe de Paris (IPGP), France, in 2001. She was awarded with the ‘Médaille d’Argent’ of the CNRS in 2009.

Scientist should be able to take time to produce publications, even if this means that there would be fewer publications

Mathilde, could you share with us your research interests and the methods you use to solve your research questions?

I work on the processes of oceanic accretion. I want to understand how new oceanic domains are created at mid-ocean ridges. My focus lies on the specific case of slow-spreading ridges, where tectonic processes are prevalent, and I unravel the interactions between tectonics, magmatism and hydrothermalism. I’m primarily a geologist, but in addition to submersible studies and rock sampling I also use several geophysical methods, that include gathering time series data on active processes such as seismicity and the temperature of hydrothermal vent fluids.

That’s quite a lot different topics you address. What is the favourite part of your research?

Mathilde Cannat – Credit: ODEMAR scientific cruise

Participate in sea-going cruises is the best part of the job. In particular, the use of manned or remotely operated submersibles to explore the seafloor is a very exciting business. I also very much enjoy good collaborations with colleagues, and the last stages of writing a paper, when it is almost finished. Lastly I am also fond of working with and advising PhD students.

Creating new concepts and knowledge is highly relevant no matter the topic

What do you think makes your research relevant and connected to real world applications?

In my opinion, creating new concepts and knowledge is highly relevant no matter the topic. I completely disagree with the notion that creation of knowledge belongs to some other less real world. I even go further and believe that research is a fundamental part of our culture. In my view whether it can be applied to some material objective at short or longer term does neither increases or decreases its relevance.

After being in the field for quite some years now, what do you consider your biggest academic achievement?

In the ’90s, I proposed a new concept for the formation of seafloor that is partially made of tectonically uplifted rocks from the earth’s mantle. I was the principal proponent of this idea and until today it is still an accepted and commonly used concept.

What is the main problem that you solved during your most recent project?

I don’t believe that science problems are ever truly solved. It is more like conceptual hypotheses that are made based on our current understanding. These hypotheses can then be tested which in most cases results in updating the concept and so on. So for this question, I can say that in my most recent project I have been able to gather observations that appear consistent with the hypothesis that I made with a colleague a few years back concerning the formation of new seafloor at mid-ocean ridges that have a very low melt budget.

Scientist should be able to take time to produce publications, even if this means that there would be fewer publications

Over the years you have seen the system in which scientists manoeuvre their work being changed and adapted. What would you like to change to improve how science in your field is done?

I would definitely change science funding and general organisation to put the emphasis back on teamwork. Also, the pressure that scientists have on publishing their work should go down. Scientist should be able to take time to produce publications, even if this means that there would be fewer publications but these would have been more thought about!

Sauter, Cannat, et al., 2013. Nature Geoscience, 6, 314-320.

 

For the near future, what do you think are the biggest challenges right now in your field?

We should definitely look at plate tectonics in relation to a more global picture. This means that it would include the interactions and impacts between the solid Earth and the biosphere, the oceans, the atmosphere. This global picture should be regarded both in the present, with a better understanding of time variable processes, and in the past through the Earth’s history.

[To ECS] Do not become bitter when it seems to be so hard to get a stable position

One last question for the Early Career Scientists (ECS) that read this blog, when you were in the early stages what is the best advice you ever received and what advice would you give to them?

When I was an ECS myself, I saw myself staying in academia. The best advice that I was given at the time, I guess, was not to become bitter because it seemed to be so hard and take such a long time to get a stable position during my postdoc years. And so to ECS, I would definitely suggest not to hesitate to contact people, even senior people, if you like their work. Don’t be afraid to ask them questions, explain your own ideas and get into a scientific discussion with them.

Interview conducted by Anouk Beniest