ERE
Energy, Resources and the Environment

environment

Words on Wednesday: A multi-model analysis of change in potential yield of major crops in China under climate change

Words on Wednesday aims at promoting interesting/fun/exciting publications on topics related to Energy, Resources and the Environment. If you would like to be featured on WoW, please send us a link of the paper, or your own post, at ERE.Matters@gmail.com.

***
Yin, Y., Tang, Q., and Liu, X.: A multi-model analysis of change in potential yield of major crops in China under climate change, Earth Syst. Dynam., 6, 45-59, doi:10.5194/esd-6-45-2015, 2015

Abstract:

Climate change may affect crop growth and yield, which consequently casts a shadow of doubt over China’s food self-sufficiency efforts. In this study, we used the projections derived from four global gridded crop models (GGCropMs) to assess the effects of future climate change on the yields of the major crops (i.e., maize, rice, soybean and wheat) in China. The GGCropMs were forced with the bias-corrected climate data from five global climate models (GCMs) under Representative Concentration Pathway (RCP) 8.5, which were made available through the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of the crops would decrease in the 21st century without carbon dioxide (CO2) fertilization effect. With the CO2 effect, the potential yields of rice and soybean would increase, while the potential yields of maize and wheat would decrease. The uncertainty in yields resulting from the GGCropMs is larger than the uncertainty derived from GCMs in the greater part of China. Climate change may benefit rice and soybean yields in high-altitude and cold regions which are not in the current main agricultural area. However, the potential yields of maize, soybean and wheat may decrease in the major food production area. Development of new agronomic management strategies may be useful for coping with climate change in the areas with a high risk of yield reduction.

The MM of the relative change in the simulated yield of maize (a), rice (b), soybean (c) and wheat (d) with the CO2 effect at the end of the 21st century (2070–2099) compared with the simulated yield in the historical period (1981–2010).

The MM of the relative change in the simulated yield of maize (a), rice (b), soybean (c) and wheat (d) with the CO2 effect at the end of the 21st century (2070–2099) compared with the simulated yield in the historical period (1981–2010).

Words on Wednesday: Environmental soil quality index and indicators for a coal mining soil

Words on Wednesday aims at promoting interesting/fun/exciting publications on topics related to Energy, Resources and the Environment. If you would like to be featured on WoW, please send us a link of the paper, or your own post, at ERE.Matters@gmail.com.

***
Masto, R. E., Sheik, S., Nehru, G., Selvi, V. A., George, J., and Ram, L. C.: Environmental soil quality index and indicators for a coal mining soil, Solid Earth Discuss., 7, 617-638, doi:10.5194/sed-7-617-2015, 2015

Abstract:

Assessment of soil quality is one of the key parameters for evaluation of environmental contamination in the mining ecosystem. To investigate the effect of coal mining on soil quality, opencast and underground mining sites were selected in the Raniganj Coafield area, India. The physical, chemical, biological parameters, heavy metals, and PAHs contents of the soils were evaluated. Soil dehydrogenase (+79%) and fluorescein (+32%) activities were significantly higher in underground mine (UGM) soil, whereas peroxidase activity (+57%) was higher in opencast mine (OCM) soil. Content of As, Be, Co, Cr, Cu, Mn, Ni, and Pb was significantly higher in OCM soil, whereas, Cd was higher in UGM. In general, the PAHs contents were higher in UGM soils probably due to the natural coal burning in these sites. The observed values for the above properties were converted into a unit less score (0–1.00) and the scores were integrated into environmental soil quality index (ESQI). In the unscreened index (ESQI-1) all the soil parameters were included and the results showed that the quality of the soil was better for UGM (0.539) than the OCM (0.511) soils. Principal component analysis was employed to derive ESQI-2 and accordingly, total PAHs, loss on ignition, bulk density, Be, Co, Cr, Ni, Pb, and microbial quotient (respiration: microbial biomass ratio) were found to be the most critical properties. The ESQI-2 was also higher for soils near UGM (+10.1%). The proposed ESQI may be employed to monitor soil quality changes due to anthropogenic interventions.

Environmental soil quality index of opencast and underground mine soils by (a) unscreened transformations, and (b) principal component analysis based index

Environmental soil quality index of opencast and underground mine soils by (a)
unscreened transformations, and (b) principal component analysis based index