ERE
Energy, Resources and the Environment

earth system dynamics

Earth Sciences: ‘Rocks for Jocks’, or hard science?

According to some Republicans in the US, Earth Sciences cannot be regarded as one of the ‘pure sciences’, or hard science. Is Earth Sciences simply Rocks for Jocks, or do the earth sciences actually encompass some fundamental work here? Suggestions have been made that NASA should steer its focus away from Earth Sciences and more onto space exploration and research. If NASA complies, it would most likely mean that will be redirected from Earth Sciences to Planetary Sciences, leaving less budget to study our own planet. A final vote still needs to be made, but what should the outcome be?

“Earth sciences are a fundamental part of science. They constitute hard sciences that help us understand the world we live in and provide a basis for knowledge and understanding of natural hazards, weather forecasting, air quality, and water availability, among other concerns.”

– American Geophysical Union CEO Christine McEntee –

I wholeheartedly agree with Christine McEntee, without Earth Sciences we would definitely not be able to study and better understand some of the most challenging issues society is facing these days: climate change, earthquakes, and energy production, to name a few. Less money automatically will mean less research being done to know more about our own planet. Knowing more about Earth will also help us to understand those other far-away inhabitable planets we are after.

Read the whole article on Science Insider, as well as one of the replies at the AGU Blogoshere. How do you feel about Earth Sciences as a pure science? Do you agree? What research are you doing to help us forward in understanding the Earth (or other planets)? Let us know 🙂

Total Solar Eclipse from the Perspective of Space (by Maximilian Reuter, taken from ImagGeo)

Total Solar Eclipse from the Perspective of Space (by Maximilian Reuter, taken from ImagGeo)

Words on Wednesday: A multi-model analysis of change in potential yield of major crops in China under climate change

Words on Wednesday aims at promoting interesting/fun/exciting publications on topics related to Energy, Resources and the Environment. If you would like to be featured on WoW, please send us a link of the paper, or your own post, at ERE.Matters@gmail.com.

***
Yin, Y., Tang, Q., and Liu, X.: A multi-model analysis of change in potential yield of major crops in China under climate change, Earth Syst. Dynam., 6, 45-59, doi:10.5194/esd-6-45-2015, 2015

Abstract:

Climate change may affect crop growth and yield, which consequently casts a shadow of doubt over China’s food self-sufficiency efforts. In this study, we used the projections derived from four global gridded crop models (GGCropMs) to assess the effects of future climate change on the yields of the major crops (i.e., maize, rice, soybean and wheat) in China. The GGCropMs were forced with the bias-corrected climate data from five global climate models (GCMs) under Representative Concentration Pathway (RCP) 8.5, which were made available through the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of the crops would decrease in the 21st century without carbon dioxide (CO2) fertilization effect. With the CO2 effect, the potential yields of rice and soybean would increase, while the potential yields of maize and wheat would decrease. The uncertainty in yields resulting from the GGCropMs is larger than the uncertainty derived from GCMs in the greater part of China. Climate change may benefit rice and soybean yields in high-altitude and cold regions which are not in the current main agricultural area. However, the potential yields of maize, soybean and wheat may decrease in the major food production area. Development of new agronomic management strategies may be useful for coping with climate change in the areas with a high risk of yield reduction.

The MM of the relative change in the simulated yield of maize (a), rice (b), soybean (c) and wheat (d) with the CO2 effect at the end of the 21st century (2070–2099) compared with the simulated yield in the historical period (1981–2010).

The MM of the relative change in the simulated yield of maize (a), rice (b), soybean (c) and wheat (d) with the CO2 effect at the end of the 21st century (2070–2099) compared with the simulated yield in the historical period (1981–2010).