CR
Cryospheric Sciences

sea ice floes

Did you know? – Storms can make Arctic sea ice disappear even faster

Did you know? – Storms can make Arctic sea ice disappear even faster

The increase in air and water temperature due to climate change drives the retreat in the Arctic sea-ice cover. During summer, when sunlight reaches the Arctic, the absorption of heat by the dark ocean water enhances the sea-ice melt through the ice-albedo feedback. During winter, when sunlight does not reach the Arctic, another feedback is at work, as storms enhance the energy transfer between air, ice and water…


How can storms enhance sea-ice melting?

In summer, when the Arctic sea-ice cover is close to its minimum extent, a large storm can rapidly lead to a further decrease in the ice cover. In the case of a storm, the ice breaks up and is pushed together due to the wind-induced waves that quickly develop in the vast areas of open water. Once the storm is over, the resulting small ice pieces drift apart and melt faster than the larger ice pieces would have melted before the storm.

During winter, there is hardly any open water in the Arctic Ocean. An exception is the Barents Sea, where warm ocean water flows in from the North Atlantic and sinks under the surface when it meets the sea ice. Because this inflowing water got warmer over the past couple of decades, the Barents Sea has become nearly ice free in the winter (Polyakov et al, 2017). The “Whaler’s Bay“, north of Svalbard, is experiencing a similar evolution. In this area of open water, where the banks of the bay are formed not by land, but by sea ice, warm ocean water brought by currents sinks under the ice as well. While the effect of the water warming leads to a clear retreat of the ice in both the Barents Sea and Whaler’s Bay, another phenomenon can lead to an even faster retreat: episodic winter storms (e.g. Boisvert et al, 2016) that bring in warm air and push the sea ice northwards.

Until now, scientists observed both processes mainly using ocean moorings and satellite remote sensing sources as winter in-situ observations in this area are very rare.

Fig. 2: N-ICE2015 was based in an ice camp set around RV Lance. The ship was assisted to approx. 84N by an ice breaker and then left to drift out towards the Whaler’s Bay slowly with the sea ice and ocean surface current. [Credit: Paul Dodd, Norwegian Polar Institute].

Observations from the N-ICE 2015 campaign

In early 2015, the Norwegian Polar Institute led a half-a-year-long international expedition in the sea ice north of the Whaler’s Bay (Norwegian Young Sea Ice Cruise, N-ICE2015). During the winter part of the expedition, when air temperatures were typically below -20ºC, six powerful storms brought strong winds and mild temperatures into the region. The atmosphere-ice-ocean measurements recorded by the expedition revealed complex processes of energy transfer resulting in complex combination of thin and snow-covered sea ice, numerous leads, and pressure ridges (see this previous post about sea-ice dynamics).

The observations from N-ICE2015 show that early winter storms deposited a thick snow cover on the ice. Because snow is an excellent insulator, heat from the ocean cannot escape into the atmosphere and the water right under the ice does not cool enough to form further sea ice. This way, the ice stays relatively thin. So thin, that it yields the weight of the deep snow cover and gets submerged under the sea level. Generally, ice floes can be kilometers-wide and have thick steep edges built of pressure ridges that prevent water seeping into the snow from the sides of the floes.

However, each new storm during the observation period came with strong southerly winds that pushed the ice floes northwards with such force that they cracked in much smaller pieces. After the center of the storm passed over the sea ice, the wind direction reverted to southward and the ice stretched again towards Whaler’s Bay. The cracked floes were then less protected from water seeping into the snow from the cracks. Some large cracks even developed into leads with open water. After the storms, northerly winds brought back cold temperatures and cracks, leads, and flooded snow froze rapidly.

At the same time, the motion of the ice floes led to vertical mixing at the ocean’s surface. If this mixing happened right above the sinking warm water, some of the warm water was brought up to the surface and melted the ice from below.

Figure 3: The Arctic Winter Storm Cycle [Adapted from Graham et al. (2019)].

The shallow warm ocean water currents are unique to the Barents Sea and Whaler’s Bay in the Arctic. Further in the Central Arctic, the cold ocean has much less potential to melt sea ice during winter. Still, many powerful storms can reach beyond the North Pole and cross the whole Arctic Ocean. This means that the abundant snowfall, breaking-up of the ice floes, flooding of snow and opening of the leads can be common in large parts of the Arctic Ocean in the winter (for details see Fig. 3 and Graham et al, 2019). This way, a row of passing storms cannot only build a deep snow cover, but also create a broken-up ‘ice-scape’ that is susceptible to melt faster during summer. Moreover, abundance of areas of thin ice which transforms into leads can let enough light into the ocean to trigger large algae bloom earlier than usual in the season (Assmy et al, 2017). In summary, winter storms can make a large cumulative impact that lasts far beyond the short duration of a single storm.

More observations are needed!

Although it provided a lot of new understanding on the importance of storms for the sea-ice evolution, the N-ICE2015 brought some limitations. For example, it ended in June, before we could observe summer melt processes and it was limited to the area north of the Whaler’s Bay. To confirm and further explore the Arctic atmosphere-ice-ocean-ecosystem processes, the international scientific community is launching an even larger expedition in 2019 and 2020.

The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) will be a huge international effort with hundreds of scientists involved in field work, data analysis and research. Its main goal is to collect the data from the ‘new Arctic’ where the sea ice is much thinner than earlier decades. Such data can help improve the climate model projections that still under-represent the recent decline in sea ice extent and volume. MOSAiC will provide observations spanning over the full annual cycle of sea ice, from freeze-up in fall 2019 to melt in summer 2020. Geographically, the expedition will cover vast distances by drifting with the sea ice from the Central Arctic towards the North Atlantic. MOSAiC observations will build on the results from N-ICE2015 and will measure the effects of storms also in the Central Arctic.

Further reading

Edited by Clara Burgard


Polona Itkin is a researcher at the UiT The Arctic University of Norway, Tromsø. She investigates the sea ice dynamics of the Arctic Ocean and its connection to the sea ice thickness and snow depth. In her work she combines the information from in-situ observations, remote sensing and numerical modeling. Polona was a post-doctoral researcher at the Norwegian Polar Institute and one of many early career scientists involved with N-ICE2015. The expedition was highlighted also in their social media project ‘oceanseaiceNPI’: Instagram.com/OceanSeaIceNPI, Twitter.com/OceanSeaIceNPI, Facebook.com/OceanSeaIceNPI, contact Email: polona.itkin@uit.no.

Image of the Week – The shape of (frozen sea) water

 

Figure 1: Annual evolution of the sea ice area with two different floe shape parameters of 0.44 (red) and 0.88 (blue). The model is spun-up between 2000 – 2006 and then evaluated for a further ten years between 2007 – 2016 and the mean values over this period displayed by the thick lines. Thin lines show the results for individual years. [Credit: Adam Bateson]

Polar sea ice exists as isolated units of ice that we describe as floes. These floes do not have a constant shape (see here for instance); they can vary from almost circular to being jagged and rectangular. However, sea ice models currently assume that all floes have the same shape. Much focus has been paid to the size of floes recently, but do we also need to reconsider how floe shape is treated in models?


Why might floe shape matter?

In recent years, sea ice models have started to examine more and more how individual floes influence the overall evolution of sea ice.

A particular focus has been the size of floes (see here and here) and the parameterisation of processes which influence floe size (see here for example). However less attention has been given to the shape of the floe. The shape of the floe is important for several reasons:

  • Lateral melt rate: the lateral melt rate describes how quickly a floe melts from its sides. Two floes with the same area but different shape can have a different perimeter; the lateral melt rate  is proportional to the floe perimeter.
  • Wave propagation: a straight floe edge will impact propagating waves differently to a curved or jagged floe edge. The distance waves travel under the sea ice and hence the extent of sea ice that waves can fragment will be dependent on these wave-floe edge interactions.
  • Floe mechanics: an elongated floe (i.e. much longer in one direction than another) will be more likely to break from incoming waves if its longer edge is aligned with the direction the waves are travelling.

How do models currently treat floe shape?

One approach used within sea ice models to define floe shape is the use is the use of a parameter, α. The smaller the floe shape parameter, the longer the floe perimeter (and hence, the higher the lateral melt rate). A standard value used for the parameter is 0.66 (Steele, 1992). Figure 2 shows how this floe shape parameter varies for some common shapes.

Figure 2: The floe shape parameters for some common shapes are given for comparison to the standard value of 0.66. [Credit: Adam Bateson]

The standard value of the floe shape parameter, 0.66, was obtained from taking the mean floe shape parameter measured over all floes greater than 1 km from a singular study area of 110 km x 95 km at one snapshot in time. Despite the limited data set used to estimate this shape parameter, it is being used for all sea ice throughout the year for all floe sizes. However, this would only be a concern to the accuracy of modelling if it turns out that sea ice evolution in models is sensitive to the floe shape parameter.

 

Model sensitivity to floe shape

To investigate the model sensitivity to the floe shape parameter two simulations have been run: one uses a floe shape parameter of 0.88 and the other uses 0.44, chosen to represent likely extremes. The two simulations are run from 2000 – 2016, with 2000 – 2006 used as a spin-up period. Figure 1 displays the mean total ice area throughout the year and results of individual years for each simulation. Figure 3 is an equivalent plot to show the annual evolution of total ice volume for each simulation.

The results show that the perturbation from reducing the floe shape parameter is smaller than the variation between years within the same simulation.  However, the model does show a permanent reduction in volume throughout the year and a 10 – 20 % reduction in the September sea ice minimum. The impact of the floe shape is hence small but significant, particularly for predicting the annual minimum sea ice extent and volume.

Figure 3: Annual evolution of the sea ice volume with two different floe shape parameters of 0.44 (red) and 0.88 (blue). The model is spun-up between 2000 – 2006 and then evaluated for a further ten years between 2007 – 2016 and the mean values over this period displayed by the thick lines. Thin lines show the results for individual years.

More recent studies on floe shape

In 2015, Gherardi and Lagomarsino analysed the floe shape behaviour from four separate samples of satellite imagery from both the Arctic and Antarctic. The study found different distributions of floe shapes in different locations, however there was no correlation between floe shape and size. This property would allow models to treat floe shape and size as independent properties. More recently, in 2018, Herman et al. analysed the results of laboratory experiments of ice breaking by waves. It was found that wave break-up influenced the shape of the floes, tending to produce straight edges and sharp angles.  These features are associated with a smaller floe parameter i.e. would produce an increased lateral melt rate.

What next?

More observations are needed to identify whether the use of a constant floe shape parameter is justified. The following questions are important:

  • Do further observations support the finding that floe size and shape are uncorrelated?
  • What range of values for the floe shape parameter can be observed in reality?
  • Do we see significant variations in the floe shape parameter between locations?
  • Do these variations occur over a large enough scale that they can be represented within existing model resolutions?

Further reading

Edited by Violaine Coulon and Sophie Berger


Adam Bateson is a PhD student at the University of Reading (United Kingdom), working with Danny Feltham. His project involves investigating the fragmentation and melting of the Arctic seasonal sea-ice cover, specifically improving the representation of relevant processes within sea-ice models. In particular he is looking at lateral melting and wave induced fragmentation of sea-ice as drivers of break up, as well as the role of the ocean mixed layer as either an amplifier or dampener to the impacts of particular processes. Contact: a.w.bateson@pgr.reading.ac.uk or @a_w_bateson on twitter.

Image of the week — Making pancakes

A drifting SWIFT buoy surrounded by new pancake floes. [Credit: Maddie Smith]

It’s pitch black and twenty degrees below zero; so cold that the hairs in your nose freeze. The Arctic Ocean in autumn and winter is inhospitable for both humans and most scientific equipment. This means there are very few close-up observations of sea ice made during these times.

Recently, rapidly declining coverage of sea ice in the Arctic Ocean due to warming climate and the impending likelihood of an ‘ice-free Arctic’ have increased research and interest in the polar regions. But despite the warming trends, every autumn and winter the polar oceans still get cold, dark, and icy. If we want to truly understand how sea ice cover is evolving now and into the future, we need to better understand how it is growing as well as how it is melting.


Nilas or thin sheets of sea ice [Credit: Brocken Inaglory (distributed via Wikimedia Commons) ]

Sea ice formation

Sea ice formation during the autumn and winter is complex. Interactions between ocean waves and sea ice cover determine how far waves penetrate into the ice, and how the sea ice forms in the first place. If the ocean is still, sea ice forms as large, thin sheets called ‘nilas’. If there are waves on the ocean surface, sea ice forms as ‘pancake’ floes – small circular pieces of ice. As the Arctic transitions to a seasonally ice-free state, there are larger and larger areas of open water (fetch) over which ocean surface waves can travel and gain intensity. Over time, with the continued action of waves in the ice, pancake ice floes develop raised edges —  as seen in our image of the week — from repeatedly bumping into each other. Pancake ice is becoming more common in the Arctic, and it is already very common in the Antarctic, where almost all of the sea ice grows and melts every year.

Nilas vs pancakes

Nilas and pancake sea ice are different at the crystal level (see previous post), and regions of pancake ice and nilas of the same age may have different average ice thickness and ice concentration. As a result, the interaction of the ocean and atmosphere in these two ice types may be very different. Gaps of open water between pancake ice floes allow heat fluxes to be exchanged between the ocean and atmosphere – which can have very different temperatures during winter. Nilas and pancakes also interact with waves differently – nilas might simply flex with a low-intensity wave field, or break into pieces if disturbed by large waves, while pancakes bob around in waves, causing a viscous damping of the wave field. The two ice types have very different floe sizes (see previous posts here and here). Nilas is by definition is a large, uniform sheet of ice; pancake floes are initially very small and grow laterally as more frazil crystals in the ocean adhere to their sides, and multiple floes weld together into sheets of cemented pancakes.

How to make observations?

Sea ice models have only recently begun to be able to separate different sizes of sea ice. This allows more accurate inclusion of growth and melt processes that occur with the different sea ice types. However, observations of how sea ice floe size changes during freeze-up are required to inform these new models, and these observations have never been made before. Pancake sea ice floes are often around only 10 cm in diameter initially, which is far too small to observe by satellite. This means that observations of pancake growth need to be made close-up, but the dynamic ocean conditions in which pancakes are created makes it difficult to deploy instruments in-situ. So how can we observe pancake sea ice in this challenging environment?

In a recent paper (Roach et al, 2018), we used drifting wave buoys, called SWIFTs, to capture the growth of sea ice floes in the Arctic Ocean. SWIFTs are unique platforms (see image of the week) which drift in step with sea ice floes, recording air temperature, water temperature, ocean wave data and – crucially for sea ice – images of the surrounding ice. Analysis of the series of images captured has provided the first-ever measurements of pancake freezing processes in the field, giving unique insight into how pancake floes evolve over time as a result of wave and freezing conditions. This dataset has been compared with theoretical predictions to help inform the next generation of sea ice models. The new models will allow researchers to investigate whether describing physical processes that occur on the scale of centimetres is important for prediction of the polar climate system.

Edited by Sophie Berger


Lettie Roach is a PhD student at Victoria University of Wellington and the National Institute for Water and Atmospheric Research in New Zealand. Her project is on the representation of sea ice in large-scale models, including model development, model-observation comparisons and observation of small-scale sea ice processes.  

 

 

 

Maddie Smith is a PhD student at the Applied Physics Lab at the University of Washington in Seattle, United States. She uses observations to improve understanding of air-sea interactions in polar, ice-covered oceans.

Image of the Week – Does size really matter? A story of ice floes and power laws

Figure 1: Sea ice extent in 2014 during the melting season. The pink lines mark the inner and outer extent of the marginal ice zone. The data comes from the CPOM setup of the CICE sea-ice model run with 9 years spin up from 2005. [Credit: Adam Bateson]

The retreating Arctic sea ice is one of the most well-known facets of Climate Change. Images of polar bears desperately swimming through polar seas searching for somewhere to rest and feed resonate strongly with the public. Beyond these headlines however, the Arctic Ocean is displaying a rapid transition from having mostly permanent ice cover to a more seasonal cover.


The Marginal Ice Zone

As both atmospheric and ocean average temperatures increase over the 21st century, the region of the Arctic considered either marginal or seasonal i.e. regions where sea ice is present for at least some of the year but with periods of either no or incomplete sea ice cover, is projected to increase significantly. Our image of the Week (Fig. 1) shows how the Marginal Ice Zone (defined here as regions with 15 % – 80 % ice coverage) evolves through the melting season. This means that the thermodynamic (i.e. melting, freezing) and dynamic (i.e. mechanical) processes which dominate the marginal ice zone are likely to become more important in influencing how the sea ice evolves in future.

Floe size matters

A key parameter to describe the behaviour of this region is the size of the individual ice floes – sheets of floating sea ice – which form the sea ice cover (see also a previous post on this topic). Floe size impacts melt rate, floe mechanical response, atmosphere-ocean momentum exchange and wave-ice interactions (Fig. 2). The sea ice component of climate models usually assumes all floes have the same, constant size; this assumption removes the ability of sea ice models to represent the complexity of the marginal ice zone. As a result processes which influence floe size such as wave induced break up of floes and lateral melting can’t be represented adequately in current climate models.

Figure 2: Video shows significant wave height in 2014 (darker blue colours indicate bigger waves; note also that a white colour indicates no waves, not necessarily sea ice cover). The purple/pink lines mark the inner and outer extent of the Marginal Ice Zone respectively. The data come from the CPOM setup of the CICE sea-ice model run with 9 years spin up from 2005. [Credit: Adam Bateson]

How can we represent different floe sizes in models?

Given the changing Arctic environment, representing floe size as a variable quantity is likely to be important for future accuracy of sea ice modelling. Currently sea ice models tend to divide the Polar Regions into grid cells, with properties defined as an average across the grid cell. However floe sizes can vary significantly over sub kilometre scales. There are four alternative approaches to representing such a non-uniform distribution of floe sizes within a grid cell:

  1. Define floes individually within the model and allow each floe to evolve independently.
  2. Use a categorical floe size distribution i.e. assign floes to size categories of 1 – 10 m, 10 – 20 m etc. (e.g. Horvat et. al, 2015).
  3. Impose a floe size distribution on each grid cell which evolves over time driven by relevant processes such as lateral melting or floe break-up (e.g. Williams et. al, 2013 a & b).
  4. A single floe size for each grid cell is diagnosed from the fractional ice coverage.

 

Option 1 would be the ideal approach from a Physics perspective. It assumes nothing about what form the floe size distribution may take and allows us to properly assess the impact of different processes for floes of different sizes. This approach is computationally expensive however, which means it will take longer for models to run. Option 4 would the simplest option and wouldn’t have negligible impacts on model run times, however it wouldn’t be possible to include in the model any processes which influence floe size. Option 2 and option 3 represent intermediates between these two extremes. In particular option 3 would be a preferred compromise if floes can be represented as a coherent distribution which evolves over time at the grid length scale.

We should now look at whether observations support the use of such a distribution.

The power law distribution

Figure 3: The cumulative number density for floe size can be represented by a power law. Note that both scales are log scales, and that C in the equation is a constant. The blue and green lines show the distribution for smaller and larger exponents respectively. Note the cumulative number density for a given floe diameter, x, is the fraction of floes size x and larger. [Credit: Adam Bateson]

The floe size distribution is most commonly fitted to a power law (Fig. 3). Power law systems have the property of self-similarity, a term attributed to a system which looks the same over different scales (e.g. the metre or kilometre scale). Power law distributions are relatively easily to investigate mathematically, and can easily be incorporated into a model without significant computational expense.

Do observations support the use of a power law?

Many individual experiments to assess the floe size distribution have shown a good fit to the power law. However, a large range of values for the power law exponent have been reported with observations ranging from 0.9 to 4. Other papers have proposed two power laws over different size ranges, with smaller exponents used for the smaller floe range. Herman et. al (2010) proposed that a distribution with a variable exponent would produce a better fit than a power law. There are further questions we need to consider as well. Over what scale are power laws a valid approximation? What determines the exponent of the power law and can it be assumed that this is constant? Is the power law only valid over a certain range of floe sizes and if so what determines this range?

These questions are not trivial, and the available observations are not sufficient to answer them. However, there is still value in testing different distributions and approaches within models. This can provide information about how sensitive the sea ice cover is to different distributions and which processes in particular are important to accurately model winter ice growth and summer ice loss in the marginal ice zone.

References/Further Reading

Edited by Sophie Berger


Adam Bateson is a PhD student at the University of Reading (United Kingdom), working with Danny Feltham. His project involves investigating the fragmentation and melting of the Arctic seasonal sea-ice cover, specifically improving the representation of relevant processes within sea-ice models. In particular he is looking at lateral melting and wave induced fragmentation of sea-ice as drivers of break up, as well as the role of the ocean mixed layer as either an amplifier or dampener to the impacts of particular processes. Contact: a.w.bateson@pgr.reading.ac.uk or @a_w_bateson on twitter.

Image of the Week – Sea-ice dynamics for beginners

Image of the Week – Sea-ice dynamics for beginners

When I ask school children or people who only know about sea ice from remote references in the newspapers: ‘How thick do you think is the Arctic sea ice?’, I often get surprising answers: ’10 meters? No, it must be thicker – 100 meters!’. It seems like sea ice, often depicted as a uniform white cover around the North Pole and as a key element in accelerated warming of the Polar Regions, imposes a majestic image. Unfortunately, sea ice is much more fragile.


Growing in the current

Actually, sea ice is on average just about 2 m thick. It used to be thicker, up to 3 m, but such ice needs several winters to grow and is quite rare in the modern-day Arctic as winters are warmer than they used to be (see this previous post). Currently, more than half of the Arctic sea-ice area melts away completely during summer and grows back during the next winter. Such a thin layer of frozen water floating on the ocean is not strong enough to resist the forces of the wind, which pushes it around in ocean surface currents. In order for the ice to move, it has to deform and breaks into ice floes (read more in this previous post). Some ice floes move apart (divergence) in leads and polynyas (see this previous post), while others are pressed together (convergence) in pressure ridges, where blocks of ice pile up against and on top of each other (see our Image of the Week).

Ice grows from the ocean surface layer by water freezing. This is called thermodynamical growth. Thermodynamical growth produces most of the ice forming in the time from freeze-up in fall until the ice becomes about 1 to 2 m thick in mid-winter. At that point, sea ice approaches equilibrium thickness, i.e. the sea ice is thick enough to insulate the cold atmosphere from the relatively warm ocean. But because sea ice deforms, it can continue growing during the rest of the winter too. Pressure ridges sails can stick several meters out of the icy landscape, while their much larger and bulkier keels are hidden below the surface. Ridges can store large volume of sea ice – about a third (Hansen et al, 2013)! At the same time, new ice can grow in leads where open water is exposed to the atmosphere.

The following video is a collection of movies showing consequences and acts of sea-ice deformation. The first part is taken from R/V Lance – the ice-strengthened research ship of Norwegian Polar Institute, while she is navigating along a lead in late winter. Observe how much space is taken by pressure ridges! The second part of the movie shows a pressure ridge growing. Listen to the sound of deforming ice!

Another positive feedback

In winter, temperatures are so low that all the fractures, leads and pressure ridges freeze back – they heal. In summer, however, these damages are the first to appear again. Dark water with low albedo (read more about the albedo feedback in this post) is exposed and the ice melts faster in such regions. Because the Arctic sea ice became relatively thin over the recent decades, it also became less resistant to the forces of the wind. Such thin ice breaks more easily (e.g. Itkin et al, 2017). This means that, as more of such damaged ice is present in summer, the ice cover melts faster. So, here is an additional positive feedback for the Arctic ice under climate change: thinner ice melts faster also because it has become weaker and therefore breaks up easier.

Further reading

Edited by Clara Burgard


Polona Itkin is a Post-doctoral Researcher at the Norwegian Polar Institute, Tromsø. She investigates the sea ice dynamics of the Arctic Ocean and its connection to the sea ice thickness. In her work she combines the information from in-site observations, remote sensing and numerical modeling. Polona is part of the social media project ‘oceanseaiceNPI’ – a group of scientists that communicates their knowledge through social media channels:

Instagram.com/OceanSeaIceNPI, Twitter.com/OceanSeaIceNPI, Facebook.com/OceanSeaIceNPI, contact Email: polona.itkin@npolar.no

Image of the Week – Sea Ice Floes!

Image of the Week – Sea Ice Floes!

The polar regions are covered by a thin sheet of sea ice – frozen water that forms out of the same ocean water it floats on. Often, portrayals of Earth’s sea ice cover show it as a great, white, sheet. Looking more closely, however reveals the sea ice cover to be a varied and jumbled collection of floating pieces of ice, known as floes. The distribution and size of these floes is vitally important for understanding how the sea ice will interact with its environment in the future. [Read More]