Geology for Global Development

Communication

Weighing up the pros and cons of artificial coral reefs

Weighing up the pros and cons of artificial coral reefs

The world’s oceans cover 71% of the Earth’s surface and contain 97% of Earth’s water. They play a key role in the climate cycle and, though perhaps not always visibly, are suffering significantly under our changing climate. An place where we can see the alarming effects of rising temperatures and increasingly acidic waters is coral reefs, which experienced the longest, most widespread, and possibly the most damaging coral bleaching event on record between 2014 and 2017. In today’s post, Heather Britton compares natural vs. artificial coral reefs in the context of protecting life below the water (UN sustainability goal 14).

Reefs around the world are dying – approximately half of the world’s coral reefs have disappeared over the past 30 years, and many are showing signs of following in their stead – be it due to increased water temperature, sea level change or an influx of sediment in previously nutrient-poor conditions. Many of the factors contributing to the bleaching and eventual death of these ecosystems stem from the impact of people, such as global warming and the development of resorts in the vicinity of fragile reef environments.

The disappearance of coral reefs would lead to a catastrophic loss of biodiversity – coral reefs are thought to be the most biodiverse ecosystems on the planet, displaying a greater variety of life than even rainforests, and it is clear that we need to act now if these environments are to be saved – for many reefs it is already too late.

One popular response to the loss of natural coral reefs has been to construct artificial reefs, replacing those that have died and providing a habitat for organisms that may otherwise become extinct. These structures take a plethora of forms, from sunken ships to cinder block stacks, but as long as they are made of a hard substrate and are able to offer protection and a place for sheltering organisms to spawn there is potential for a reef to develop in as little as two-three years.

In many ways, this is an elegant solution. Not only do artificial reefs help to combat the loss of biodiversity associated with the decline of their natural counterparts, but they attract divers and other tourists to the sites where they are placed, bringing in tourism and strengthening the economy in the area. This benefit is particularly valuable to lower income countries, some of which boast extensive coral reef ecosystems. In addition, reefs are known to concentrate fish populations and therefore are popular with the fishing industry worldwide – the first recorded artificial reefs were developed by fishermen in Japan in the 18th century, who sunk makeshift shelters to increase their haul. Reefs form from man-made substrates relatively easily, and they are certainly preferable to a lack of reefs altogether – but can artificial reefs really ever match their natural cousins?

Diver installing ocean-chemistry monitoring equipment at Florida Keys. Credit: Ilsa B. Kuffner (U.S. Geological Survey). Distributed via U.S. Geological Survey. 

Artificial reefs are created extensively off the coast of Florida, as much for the economic benefit that the tourism brings (both through fishing and diving) as increasing ocean biodiversity. The region is encountering problems, however, one of which is local people choosing to develop their own personal reefs using suboptimal materials. For example, tyres, when strapped together, attract aquatic organisms as they provide a place to spawn and the shelter of a natural reef, but the toxicity of the rubber can negatively impact the environment in ways that a ship or concrete blocks will not. Ships that are sunk professionally for the purpose of artificial reef formation are extensively prepared before they are placed underwater, whereas amateurs rarely take the time to prepare their seeding structures properly. This has led some countries, such as Australia, to develop laws against the formation of artificial reefs without a permit.

Artificial reefs are also celebrated because they attract divers away from the surviving natural reefs, meaning that each individual reef is less damaged by people. It is also possible, however, that the number of tourists in total might increase in response to the increased number of dive-sites, having the opposite effect and causing dive sites in the region to become more popular.

Arguably, the most important question to be asked when discussing natural vs artificial reef structures is: do artificial reefs have biodiversity equivalent to that of natural reefs? The answer is unclear, but it certainly seems that the biodiversity of each kind of reef is different. Artificial reefs, at first glance, seem to attract more fish to them than natural reefs. This suggests that that artificial reefs may be encouraging fish to reproduce more than the naturally occurring reefs scattered throughout the oceans. However, many of the marine animals attracted to feed and shelter around artificial reefs do not breed there, and simply visit from other regions of the ocean. Artificial reefs therefore may only be acting to concentrate the fish in a single area, making them more susceptible to fishing and generally increasing the effect of fishing pressure on marine populations. This is commonly referred to as the ‘aggregation vs production’ debate. If the fish are more numerous at artificial reefs because they are breeding there, then the reef is likely acting to increase the population of that particular fish species and artificial reefs are helping to sustain the biodiversity of the oceans. If they are simply concentrating fish that typically spend their time swimming between reefs, however, fish numbers are likely to be negatively, not positively affected.

Dead corals turned to rubble, off the coast of the US Virgin Islands. Credit: Curt Storlazzi (U.S. Geological Survey). Distributed via U.S. Geological Survey.

A study on the Caribbean island of Bonaire provides some insight into the differences in diversity between natural and artificial reefs. Equal diversity was found at partnered artificial and natural reefs, but the composition of this diversity was starkly different. Whilst the sergeant major and bluehead wrasse fish were most commonly seen on the artificial reef, the natural was more commonly frequented by bicoloured damselfish and brown chromis. Similar trends were visible within the benthic community of organisms, suggesting that although artificial reefs may preserve the diversity that we see within the oceans today, some organisms appear to populate natural reefs to a far greater extent than their artificial counterparts, and these species may still be lost.

For this reason it is of the utmost importance that every effort is made to protect the natural coral reefs of today, thereby working to achieve UN sustainability goal 14 (Life below the Water). Artificial reefs are helping to preserve the biodiversity of the oceans and save countless organisms from extinction, but it is important to remember that what causes the corals of natural reefs to die will also impact the corals which begin to grow on artificial reefs. In order to prevent the loss of these ecosystems we need get to the root of the problem and combat the things that are harming coral reefs – global warming, human physical destruction of reef environments and the pollution of our oceans.

How deep-seated is bias against scientists in the Global South? Can we attribute individual disasters to climate change? Find out in Jesse Zondervan’s Dec 20  – Jan 24 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last four weeks:

If we want to solve the world’s problems, we need all the world’s scientists. Social Entrepreneur Nina Dudnik speaks out against prejudice towards scientists in the developing world. In her article, The Science Community’s “S**thole Countries” Problem, she will challenge many scientists’ own deep-seated bias.

Encouragingly, South African climate researcher Francois Engelbrecht got in the news recently. He developed a climate model, improving projections and supporting the vulnerable community in decision making.

One thing that I believed impossible, is attributing specific extreme weather events to climate change. Well, now it’s possible due to a breakthrough by climate scientist Myles Allen. Harevy reports on the rapidly expanding area of climate science.

Further in the news this month, is activity at the Mayon volcano in the Philippines, a 20-acre mega-landslide about to go in Washington State and the destruction caused by thawing permafrost in Alaska.

There’s a lot to read this month, so go ahead!

The Global South

The Science Community’s “S**thole Countries” Problem by Nina Dudnik at Scientific American

Homegrown African climate model predicts future rains – and risks by Munyaradzi Makoni at Thomson Reuters Foundation

Credit: Rhoda Baer (Public Domain)

 

Climate Change Adaptation

Scientists Can Now Blame Individual Natural Disasters on Climate Change by Chelsea Harvey at ClimateWire

Researchers explore psychological effects of climate change at ScienceDaily

Australia’s coastal living is at risk from sea level rise, but it’s happened before at The Conversation

Why Thawing Permafrost Matters by Renee Cho at State of the Planet

 

Activity at the Mayon Volcano & Other Volcanic Topics

Authorities waging war vs. fake volcanologists in social media by Aaron Recuenco at Manila Bulletin

Scientists monitor volcanic gases with digital cameras to forecast eruptions by Kimber Price at AGU’s GeoSpace blog

We’re volcano scientists – here are six volcanoes we’ll be watching out for in 2018 at The Comversation

Sustainable Cities

‘The bayou’s alive’: ignoring it could kill Houston by Tom Dart at The Guardian

‘Does Hull have a future?’ City built on a flood plain faces sea rise reckoning by Stephen Walsh at The Guardian

Education/Communication

From Natural Disasters to Other Threats, This Initiative Is Teaching Delhi Kids All About Safety by Rinchen Wangchuk at The Better India

Disaster Risk

Why the Swiss are experts at predicting avalanches by Simon Bradley at swissinfo

Tracing how disaster impacts escalate will improve emergency responses at UCL

Watching a Ridge Slide in Slow Motion, a Town Braces for Disaster by Kirk Johnson at The New York Times

The risk of landslides in Rohingya refugee camps in Bangladesh by Dave Petley at AGU’s The Landslide Blog

Deadly California mudslides show the need for maps and zoning that better reflect landslide risk by David Montgomery at The Conversation

Will Tehran be able to withstand ‘long overdue’ quake? By Zahra Alipour at Al-Monitor

Scientists to map quake-prone Asian region in hope of mitigating disaster by Michael Taylor at Thomson Reuters Foundation

How forests could limit earthquake damage to buildings by Edwin Cartlidge at IOP Physics World

Avalanches and floods, drawing by Johann Jakob Wick, 1586

 

External Opportunities

Get involved in knowledge in action

IRDR Young Scientists Programme: Call for application (3rd Batch)

Apply to join the Pressure Cooker event on Risk Communication at the 2018 Understanding Risk Forum

Vacancies: Two Research Positions on Climate & Development, The German Development Institute (DIE) Bonn

Call for applications for the Research School within the Mistra Geopolitics program

Australian Disaster Resilience Conference 2018

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.

How do you monitor an internationally disruptive volcanic eruption? How can you communicate SDGs in an Earth Science class? Jesse Zondervan’s Nov 13 – Dec 13 2017 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news, relevant to the work and interests of  Geology for Global Development . Here’s a round-up of Jesse’s selections for the past four weeks:

Bali’s Mount Angung started erupting ash this month, and a post on the Pacific Disaster Center’s website gives you an insight into the workings of Indonesia’s early warning and decision support system. How do you monitor an internationally disruptive volcanic eruption?

In Japan, eruptions in 2016 were preceded by large earthquakes (MW 7.0). A team of researchers used Japan’s high resolution seismic network to investigate the underground effects of earthquakes and volcanoes. How does an earthquake affect a volcano’s activity?

Next to plenty of disaster risk stories – including the simple question: why can’t we predict earthquakes? -, this month brings you a computer simulation tool to predict flood hazards on coral-reef-lined coasts and some thoughts on how to communicate SDGs in an earth science classroom.

Have a look!

Education/communication

The UN Sustainable Development Goals – what they are, why they exist by Laura Guertin at AGU’s GeoEd Trek blog

GeoTalk: How an EGU Public Engagement Grant contributed to video lessons on earthquake education by Laura Roberts-Artla at the EGU’s GeoTalk blog

Credit: Michael W. Ishak, used under CC BY-SA 4.0 license

Disaster Risk

Disaster Geology: 2017’s Most Deadly Earthquake by Dana Hunter at Scientific American

Can the rubble of history help shape today’s resilient cities? By David Sislen at Sustainable Cities

The underground effects of earthquakes and volcanoes at phys.org

Why Can’t We Predict Earthquakes? By David Bressan at Forbes

Detecting landslide precursors from space by Dave Petley at the AGU Landslide Blog

Ocean Sediments Off Pacific Coast May Feed Tsunami Danger by Kevin Krajick at State of the Planet

Life-saving technology provides alert as Bali’s Mount Agung spews ash, raises alarm at Pacific Disaster Center

Climate Change Adaptation

Scientists counter threat of flooding on coral reef coasts by Olivia Trani at AGU’s GeoSpace blog

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.

#EGU16 – Sessions of Interest

EGU2016-700x161The EGU General Assembly 2016 takes place in Vienna between the 17-22 April 2016. Abstract submission is now open for their fantastic range of sessions, with support applications open until 1st December 2015. These offer financial support to early-career scientists and established scientists from low, lower-middle and upper-middle income countries.

We’ve noted some sessions of immediate relevance to our work below:

SDGsEOS15: Geoscience and the Global Goals for Sustainable Development (No Abstract Processing Charges)

In September 2015 the Global Goals for Sustainable Development’ (Global Goals) were formally adopted by member states of the United Nations. Building on the Millennium Development Goals, the Global Goals aim to eradicate global poverty, end unsustainable consumption patterns and facilitate sustained and inclusive economic growth, social development and environmental protection over 15 years (2015-2030). Achieving the Global Goals by 2030 will require many communities to engage, including the geosciences. Many of the themes within the Global Goals are at the heart of geoscience education, research and practice (e.g., sustainable agriculture, water and sanitation, disaster risk reduction and resilient cities, climate change). The geoscience community should be ready and equipped to take a leading role in promoting and facilitating responsible Earth stewardship, for the public good and global development. In this session we welcome abstracts from across all divisions that demonstrate examples of, or ideas for, effective engagement with the Global Goals. Recognising that these goals are at an early stage of implementation, we particularly encourage abstracts that offer (i) creative ideas to improve the involvement of geoscientists in the fight against global poverty, (ii) lessons learnt from engagement in the Millennium Development Goals, (iii) insights into the transitions required within geoscience education, research and practice to support sustainable development, (iv) case studies of meaningful stakeholder participation and technical capacity strengthening, and (v) case studies of public sector/private sector/civil society partnerships to promote sustainable development. Through this session we aim to collate and develop strategies for sustained, effective geoscience engagement in the implementation of the Global Goals. The best format for the session will be determined based on the abstracts submitted, however we believe that a PICO session may be the best option to promote dialogue and interaction.

Last year this session included a dynamic discussion session, posters and short-course on 'natural hazards demonstrations'

Last year this session included a dynamic discussion session, posters and short-course on ‘natural hazards demonstrations’

NH9.3:  Natural Hazards Education, Communications & Science-Policy-Practice Interface

This session addresses knowledge exchange between researchers, the public, policy makers, and practitioners about natural hazards. Although we welcome all contributions in this topic, we are particularly interested in: (i) The communication (by scientists, engineers, the press, civil protection, government agencies, and a multitude other agencies) of natural hazards risk and uncertainty to the general public and other government officials; (ii) Approaches that address barriers and bridges in the science-policy-practice interface that hinder and support application of hazard-related knowledge; (iii) The teaching of natural hazards to university and lower-level students, using innovative techniques to promote understanding. We also are specifically interested in distance education courses on themes related to hazard and risk assessment, and disaster risk management, and in programmes for training in developing countries. We therefore solicit abstracts, particularly dynamic posters, on all aspects of how we communicate and educate the better understanding of natural hazards. The ability to have graphic screens at poster sessions is available (if pre-ordered through EGU), as is a location to put hands-on demonstrations or other material. We welcome both oral and poster presentations, and hope to ensure ample time for discussion.

Read an article reflecting on this session at EGU15

Guatemala City

Guatemala City

NH9.5: Urban Hazards and Risk in Developing Countries | PICO Session

This PICO session will address natural hazards and risk in urban areas of developing countries, including the role of humans in magnifying or decreasing those hazards. In urban areas of developing countries, hazard and risk analysis presents challenges such as (i) data collection, (ii) rapid informal and unplanned development creating large demands on services and infrastructure, (iii) complex natural-human systems, (iv) limited resources and capacity, (v) interaction of natural and anthropogenic hazards including cascading and concurrent hazards and (vi) communication between science, policy and the public. Here, we define “developing countries” as countries/regions with a low to medium human development index, according to the United Nations. We welcome submissions from a range of stakeholders to share their innovative theoretical and practical ideas and success stories of how urban risk can be understood and addressed in cities and towns across developing countries. Presentations will cover a variety of topics including: database and archive construction; modelling, instrumentation and tools; conceptual understanding of multi-hazards and complex natural-technological systems; and communication and policy. We anticipate a lively discussion and the sharing of best practice and novel ideas to reduce the impact of hazard events in urban areas across developing countries. This session is particularly topical given that the internationally-agreed ‘Sustainable Development Goals’ have included (Goal 11) the need to make cities and human settlements inclusive, safe, resilient and sustainable.

Other sessions: