Geology for Global Development

Communication

New Paper: Interconnected Geoscience for International Development

A new paper published in Episodes: The Journal of International Geoscience highlights the importance of geoscience in tackling complex development challenges, and the need for new approaches to overcome barriers preventing greater application of geoscience within development. ‘Interconnected geoscience for international development‘, written by Professor Michael Petterson of Auckland University of Technology (New Zealand) sets out a conceptual model that combines geoscience expertise with an understanding of developmental situations, conditions, and context. 

The Sustainable Development Goals (SDGs) and Sendai Framework for Disaster Risk Reduction require geoscientists from across all sectors and sub-disciplines to get involved, improve access to their science, and participate in effective and respectful capacity building and knowledge exchange (read more here). In this new article, Petterson (2019) reflects on his experiences as a geoscientist working in two sharply contrasting development contexts (the Solomon Islands and Afghanistan) to synthesise key learning. With one funding cycle starting as another comes to an end, taking time to reflect on and share lessons learned is sadly not always typical. As the SDGs and a renewed focus on science-for-development provide geoscientists with greater opportunities to engage in international development, this reflection is of great importance.

 

One factor discussed by Petterson (2019) is the importance of both understanding and valuing situational context (including local world views), and using this to enrich the design and implementation of projects. Another is the importance of inclusivity, building strong networks and actively including local wisdom. While good technical geoscience knowledge and skills are greatly needed in development programmes, these must be complement by a suite of other skills (often missing from the traditional education of geoscientists). Recognising this, and helping geoscientists to build these skills, is central to the work of Geology for Global Development.

Petterson (2019) notes: “Developmental setting/conditions are the foundation: these will guide how the geoscience is to be optimally applied. Projects are devised with development goals in mind and outputs/services tailored to meet the needs of policy makers and practitioners. Local affected communities must be at the heart of project outcome design. An interconnected approach places importance on issues such as inclusivity, environment and local focus, indigenous and non-conformist world-views, valuing and incorporating traditional knowledge, the possibilities of citizen-science and geoscientist-community connections/relations. The interconnected approach adopts the equal and respectful inclusive approach from the earliest stages of programme conception and development. Interconnected geoscience approaches, provide a conceptual model for the possibilities of science + social science + community + local world views, to feed into policy and communal acceptance of policy. An interconnected geoscience approach stands a better chance of addressing complex, regional and global development issues, including planetary health and global climate change. The approach improves the probability of practitioners using research results, and researchers undertaking research that addresses the highest level needs of development.”

Read the whole article (open access) here.

The seven frames of climate discussion in the media. How climate liability pushes for corporate action. Are we already unwittingly geoengineering the oceans? Jesse Zondervan’s August 2019 #GfGDpicks #SciComm

The seven frames of climate discussion in the media. How climate liability pushes for corporate action. Are we already unwittingly geoengineering the oceans? Jesse Zondervan’s August 2019 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

As Greta Thunberg hits the news with her zero-carbon crossing of the Atlantic, this month discussion on adaptation to climate change is voluminous. Coverage of climate change follow seven distinct frames, depending on the economy and other characteristics of countries, found a US/Vietnam based study.

Where in rich countries the focus lies on science and new discoveries, in low-resource countries the focus tends to be on international relations or natural impacts of climate change. Social progress and the potential for solving problems is the least popular frame, but arguably the most important.

Whilst the media and governments are grappling with adapting to climate change, litigation of companies causing emissions or neglecting climate risk to their facilities and infrastructure starts to really take off. This is driven partly by insuring companies, compensating damage whilst chasing irresponsible companies for negligence.

Though climate change claims and suits threaten any industry linked to hydrocarbons and greenhouse gas emissions, such as transport, manufacturing, agri-business, and finance, the biggest group of companies does not view it as strategic yet. This might change soon as the push for climate-change-related risk reporting in business intensifies.

How to make progress through communicating and applying science

So where is the potential for solving problems? Climate change adaptation planning always makes assumptions, and whether these are reasonable is up for debate. That is why geoscientists at Pennsylvania State University argue there is for wider use of Earth science to identify effective strategies for climate risk management.

Another opportunity for climate researchers to help out is by contributing to Wikipedia, especially information on the Global South, which is underrepresented on the wiki whilst it is overlooked as a communication platform beyond the scientific audience.

Geoengineering – yes/no or are we already doing it?

There is limited knowledge on how geoengineering techniques might affect the environment, making it a risky business for now. Analogies for solar geoengineering are often based on volcanic eruptions. But how accurate is this?

A new study based on numerical models suggests that unlike the disruption of rainfall patterns after a volcanic eruption, the sustained deployment of a geoengineering system would be less significant.

Another study published in Nature Communications this month takes a whole different perspective, arguing we are already geoengineering the ocean by the input of industrial iron fertilizing it. The study found at least half if not all the soluble iron in the air masses of Europe and North America derives from human activities.

Indeed, another study from UC Santa Barbara finds in over half of the oceans the cumulative human impact is increasing significantly and overall has doubled in the recent decade.

As always, there is more to read. Go ahead!

Climate Change Adaptation

Climate change is global—but climate journalism isn’t by Sarah DeWeerdt at Anthropocene

Climate liability is on the rise. Here’s what it looks like by Jennifer Hijazi at E&E News

Investing in Science to Improve Climate Risk Management at Eos

OPINION: Why I believe climate change researchers should contribute to Wikipedia by Katharine Vincent at the Climate and Development Knowledge Network

NEWS: Edit-a-thon helps tackle Wikipedia’s Africa gap by Lisa McNamara at the Climate and Development Knowledge Network

CDP reporting data suggests world’s biggest firms are underestimating climate risks at Acclimatise News

Desertification: A Serious Threat To Southern Europe by Ana Garcia Valdivia at Forbes

The case for retreat in the battle against climate change at ScienceDaily

Ethiopia’s future is tied to water – a vital yet threatened resource in a changing climate by Meron Teferi Taye and Ellen Dyer at The Conversation

Unpicking the datacentre industry’s complicated relationship with climate change by Nicholas Fearn at Computer Weekly

Climate Change Is Making Hawaii’s Beaches More Dangerous by Nathan Eagle at Civil Beat

Sustainability

Human impacts on oceans nearly doubled in recent decade at ScienceDaily

17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress at the World Resources Institute

Geoengineering

While we debate geoengineering the ocean, it seems we’re already doing it by Sarah DeWeerdt at Anthropocene

Geoengineering versus a volcano at Carnegie Science

Disaster Risk

Meteotsunami Spotted for the First Time in the Persian Gulf by Katherine Kornei at Eos

‘100-year’ floods will happen every 1 to 30 years, according to new flood maps at EurekAlert

External Opportunities

Opportunity: Senior Research Associate in Low-Carbon Lifestyles and Behaviour, UEA

 

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.

Why California is least prepared for earthquakes. Increasing pressure on geoengineering. Tackling the challenge of groundwater. Jesse Zondervan’s July 2019 #GfGDpicks #SciComm

Why California is least prepared for earthquakes. Increasing pressure on geoengineering. Tackling the challenge of groundwater. Jesse Zondervan’s July 2019 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

Earthquake preparedness in the US

Last month has seen two strong earthquakes in California, and in an interview with CNN seismologist Dr Lucy Jones says California is not as well prepared as it could be, especially compared to places like Japan and Chile. Political scientist Matt Motta attributes this to a low electoral incentive for policymakers to work on preventative policies rather than response to earthquake damage, which leads to the conclusion that communicating earthquake risk to people living in hazardous areas is vital to improving preparedness.

To geoengineer or not?

There has also been some debate on geoengineering, with climate scientists at Harvard and MIT arguing that risks of geoengineering may be overstated, whilst Cambridge scholars warn against the social blinding effect of ‘emissions debt’ through the temporary use of solar geoengineering.

At the same time, there is an increasing pressure from insurance companies for cities to adapt to climate change-related risks, and the threat of Antarctic ice collapse raising sea levels dramatically led to the suggestion of artificially snowing ocean water on it in great quantities.

Ultimately, we need research to understand the risks and efficacy of solar engineering, which is why the newly published map for predicting paths of particles emitted in the atmosphere is a welcome addition.

The challenge of groundwater

The challenge to relying on deeper water aquifers to sustain supply is that deeper strata are generally less conducive to extraction, water gets saltier at depth, and finally, it costs more. A new study finds that Americans are drilling deeper, raising concern over the sustainability of water extraction.

A new method of testing groundwater resources using the tidal effects of gravitation on groundwater addresses the challenge of investigating and managing water resources more sustainably.

More this month, the unwavering resistance of Guatemalans in one of the world’s most hazardous areas, the unnoticed climate crisis disasters happening weekly, and the question of sovereignty as Pacific countries drown.

Groundwater

Simple, accurate and inexpensive: A new method for exploring groundwater at the Karlsruher Institut für Technologie (KIT)

Americans are drilling deeper than ever for freshwater at University of California – Santa Barbara

Climate Change Adaptation

Insurance Companies Push Cities To Take Climate Action by Sarah Lawrynuik at The Sprawl

What happens when a country drowns? By Sarah Munoz at The Conversation

Climate Risk Disclosure Act Is Good for Your Investments by Nicole Pinko at the Union of Concerned Scientists

Arctic ice loss is worrying, but the giant stirring in the South could be even worse at The Conversation

Geoengineering

Betting on speculative geoengineering may risk an escalating ‘climate debt crisis’ by Shinichiro Asayama and Mike Hulme

Risks of Controversial Geoengineering Approach “May Be Overstated” By John Fialka at E&E News

Chaos theory produces map for predicting paths of particles emitted into the atmosphere at ScienceDaily

Sea level rise: West Antarctic ice collapse may be prevented by snowing ocean water onto it at the Potsdam Institute for Climate Impact Research (PIK)

Earthquake preparedness in the US

She’s been explaining earthquakes for decades. Here’s where she says California is least prepared by Braden Goyette at CNN

Americans focus on responding to earthquake damage, not preventing it, because they’re unaware of their risk by Matt Motta at The Conversation

Hospitals implement quake-ready technology, teams in seismically active areas by Jacqueline Renfrow at FierceHealthcare

Disaster Risk

‘Artificial intelligence’ fit to monitor volcanoes at GFZ German Research Centre for Geosciences

Istanbul: Seafloor study proves earthquake risk for the first time at the Helmholtz Centre for Ocean Research Kiel (GEOMAR)

History, disasters, and resilience: The story of Antigua Guatemala by Barbara Minguez Garcia and Rodrigo Donoso Arias at World Bank Blogs

One climate crisis disaster happening every week, UN warns by Fiona Harvey at The Guardian

External Opportunities

Law and Sustainability Summer School at the Earth System Governance Project

Opportunity: Senior Research Associate in Policy, Politics and Climate Change at the Tyndall Centre for Climate Change Research

 

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.

The link between development and resource use

The link between development and resource use

This month the GfGD blog revolved around the theme of Resources. Blog author Heather Britton explores the link between the use of natural resources and development. How feasible are the various options available to us, to reach a use of resources aligned with sustainable development? From the ideology of a circular economy, a switch to renewable resources and increasing efficiency, what might help us get out of an unsustainable pattern? [Editor’s note: This post reflects Heather’s personal opinions. These opinions may not reflect official policy positions of Geology for Global Development.]

Resources play a huge part in determining the character, history and trading power of a country. Many of these resources – such as metal ores, precious stones and fossil fuels – link directly to the geology of a region, which has inspired the theme of ‘resources’ for this month’s selection of blog posts.

This week, I want to look at how in the past, and indeed to this day, the quantity and quality of resources available to a country has acted as a predictor of how developed that country is, and how this will need to change in the future if we are to succeed in meeting the UN sustainability goals.

The most striking example of development spurred on by the availability of resources is the industrial revolution. The UK is thought to have led the way in becoming an industrialised nation due to a combination of the amount of underlying carboniferous coal, and a strong agricultural economy.

Although Britain is thought to have experienced an industrial revolution of its own between the mid-18th century and 1830, the more widely recognized industrial revolution occurred between the mid-19th to the 20th century and was experienced by other countries, including France, Germany and North America to name a few.

Without the use of coal as a resource, development might have come to the UK much later.

It is predicted that by 2050, 140 billion tons of minerals, ores, fossil fuels and biomass will be used per year – three times the current average.

The environmental effects of burning coal and other fossil fuels were not fully appreciated at this time.

In the UK, as light has been shone on the negative impact of fossil fuel use, carbon emissions have been cut to a fraction of what they were during the industrial revolution. That being said, the UK is in the privileged position of having gone through industrial development prior to the threat of global warming being appreciated.

Many countries, particularly in parts of the world with low GDP, are only now beginning to use the natural resources available to them to undergo similar development to that which the UK experienced a century ago (this website gives an indication of world income by region over time).

This poses a problem for the climate, however, and brings us to the cusp of the problem – development needs to be decoupled from resource use, so that countries are able to reap the rewards of development in a sustainable way which does not exacerbate the negative impact that people have had on our planet up until now.

But how can this be achieved?

going from our entrenched linear method of dealing with waste to a circular economy would require huge changes to the way in which property, possessions and businesses f­unction

It is predicted that by 2050, 140 billion tons of minerals, ores, fossil fuels and biomass will be used per year – three times the current average.

Citizens of developed countries consume an average of 16 tons of these same materials per capita (ranging up to 40 or more tons per person in some developed countries). By comparison, the average person in India consumes only 4 tons per year. This stark contrast demonstrates how much resources are taken for granted in the economically developed world, and how this needs to change.

One method of severing the link between development and resource availability is to shift towards a circular economy. This is an ideology whereby there is little to no waste, and instead of items being thrown away once used, the worn-out components are continually replaced.

This idea is similar to how natural ecosystems function (there is no waste in nature). Adopting this kind of lifestyle would separate our reliance on resources from the ability of a nation to develop, but going from our entrenched linear method of dealing with waste to a circular economy would require huge changes to the way in which property, possessions and businesses f­unction.

Although it may be the ideal solution, transitioning to a circular economy would require a huge change in global attitude which will take a great deal of time to develop.

A far more feasible way of working to separate unsustainable resource use from development is … to minimise the use of non-renewable resources

A far more feasible way of working to separate unsustainable resource use from development is simply to minimise the use of non-renewable resources so that it is no longer essential to use them to reach a developed state.

Methods of doing so include adopting new, greener technologies to replace the heavy industries that have been large-scale users of fossil fuels in the past (for example adopting electric arc furnace improvements in the iron and steel industry) and ensuring that fewer high carbon fuels need to be burned to heat homes by improving home insulation, particularly in cooler parts of the world.

By improving the materials, insulation and orientation of buildings (orientations which make the most use of solar gains) energy use in buildings can be cut by 80%.

On top of these examples, using more renewable energy in agriculture and continuing to innovate to create alternatives to unrenewable resources use are further options.

Picture by Joyce Schmatz, distributed via imaggeo (CC BY 3.0). By making agriculture more renewable we can take a step towards decoupling development from resource-use.

It is doubtless that as a country develops, its resource use will increase. However, with awareness of the environmental challenges facing the planet as it is growing, developing countries will be able to tap into the growing renewables industry rather than turning to substantially increased fossil fuel use.

At the end of the day, countries will develop however they are able and it is not up to anyone to dictate how they do this. However, in the interests of meeting UN sustainable development goal 13 – climate action – encouraging sustainable development may be the best way to ensure that as development spreads to more countries, our planet is not significantly affected as a result.

**This article expresses the personal opinions of the author (Heather Britton). These opinions may not reflect an official policy position of Geology for Global Development. **