Geology for Global Development

Guest

This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you've got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer to pitch your idea.

The importance of wetlands

The importance of wetlands

World Wetlands day is celebrated on 2nd February, marking the adoption of the Convention on Wetlands, also known as Ramsar Convention, in the Iranian city of Ramsar on 2nd February 1971. It “provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources.

Today 170 countries have adopted it and 2,341 Ramsar sites covering over 2,5 million km² are designated as Wetlands of International Importance. But what are wetlands and why should we care about them? I’ll address these questions and other important points in this article.

First, what are wetlands?

Basically, a wetland is an area of land that is covered with water, whether natural or artificial, permanent or temporary. This water can be salt, fresh or somewhere in between, and have a maximum depth of six metres. Mangroves, marshes, ponds, peatlands, swamps, deltas, estuaries, low-lying areas that frequently flood are all wetlands and they can be found on every continent. Some of the largest ones are the Sundarbans mangrove forest in the Ganges-Brahmaputra delta in Bangladesh, the Amazon River basin (figure below), and the Pantanal, both in Brazil.

Wetlands cover about 3% of world’s surface. A web-based map shows the global distribution of wetlands and peat areas. It was launched in 2016 by researchers from Sustainable Wetlands Adaptation and Mitigation Program – SWAMP and is based on satellite images acquired by the  Moderate Resolution Imaging Spectroradiometer (MODIS) instrument.

Why should we care about wetlands?

Wetlands are rich but also fragile environments. They can provide water, fish/biodiveristy, recreational areas and help to regulate the climate.

  • Biodiversity: Wetlands function as wildlife refuge, supporting high concentration of mammals, birds, fish and invertebrates, being nurseries for many of these species.
  • Resources: Further, they can be a huge resource for humans, supporting rice paddies (Figure 2), a staple food. They also help purify water by trapping pollutants and heavy metals in the soil and neutralizing harmful bacteria by breaking down suspend solids in the water.
  • Geohazards: Wetlands provide flood control and storm protection in coastal areas acting like a sponge during storm events such as hurricanes, reducing their power of destruction.
  • Climate change: Here is another important point that I would like to highlight about wetlands. They play an important role in climate change mitigation and adaptation, since they store huge amounts of carbon. If you are curious about this topic, see this post where Heather [a regular contributor to the GfGD Blog] discusses how carbon is stored in peat soils in the tropics and the main threats to these areas.

Wetlands in Amazon river basin during the dry season (Oct 2017), close to Santarém, Brazil – Photo: Bárbara Zambelli

Threatened environment

Despite their social and ecological importance, wetlands are continuously being degraded and even destroyed worldwide. According to this research the world has lost 64-71% of their wetlands since 1900 AD. Here is a list of the main threats towards wetlands:

  • Pollution: Generally located in low-lying areas, they receive fertilizers and pesticides from agricultural runoff, industrial effluents and households waste or sewage. These pollutants have detrimental effects on water quality and threaten the fauna and flora of wetlands. As I mentioned before, wetlands work as water filters, therefore there is a growing concern about how pollution will impact drinking water supplies and wetland biological diversity.
  • Agriculture and urbanization: One of the biggest threats to this environment is its drainage to make room for agriculture and human settlements. Such activities are an increasing threat and they destroy the ecosystem and all the benefits wetlands can provide.
  • Dams: The construction of a dam alters the natural flow of water through a landscape. This alteration may lead to an increase or decrease of water flow through a wetland, being potentially harmful for wetland ecosystems. Thus, it is essential to choose the location of a dam wisely, to reduce the impact on existing ecosystems.
  • Climate change: Climate change is shifting the world’s temperature and precipitation patterns. Wetlands are getting lost due both too much and too little water. Shallow coastal wetlands such as mangroves are being swamped because of sea level rise. In areas affected by droughts, estuaries, floodplains and marshes are drying up. Wetlands and climate change are the theme of World Wetlands Day in 2019.

Opportunities – taking action

Wetlands are a critical environment and their effective management can give a substantial contribution to biodiversity conservation and restoration, maintaining its bioecological characteristics and allowing the using of resources economically.

According to SWAMP, “carbon-rich mangroves and peatlands are high priorities in climate change adaptation and mitigation strategies throughout the world.”

With their partners, SWAMP have developed a collaborative agenda expected to raise the awareness about sustainable management of wetlands in changing world and livelihoods of local communities. The Ramsar Convention, an international agreement, is still important today because it supports environmental policy development and it encourages countries to commit to it. It is also valuable as an international forum for gathering and sharing knowledge about sustainable wetlands management. Also international NGOs such as Worldwide Fund for Nature (WWF) and Wetlands International play an important role.

Finally, regarding the Sustainable Development Goals (SDGs), recently Ramsar published a briefing note of how wetlands can contribute to their achievement. Access it hereto find out more details.

What is happening after the Fuego eruption in Guatemala? Is climate migration a bad thing? This and more in Jesse Zondervan’s June 2018 #GfGDpicks #SciComm

What is happening after the Fuego eruption in Guatemala? Is climate migration a bad thing? This and more in Jesse Zondervan’s June 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

Everything about the Fuego eruption

At the start of this month, Guatemala’s Fuego volcano erupted explosively, costing many lives and destroying properties and infrastructure.

Professor Handley from Macquarie University explains why the eruption was so disastrous, while Professor Little notes the recovery efforts Guatemalans make on their own, without much government input. Sophie Brockmann delves into history and recovers the cultural significance and political intricacies of Guatemalan dealings with volcanoes.

Climate migration: is it a bad thing?

While the world wakes up to the magnitude of climate migration, a key question we will need to ask is: does climate migration pose a problem or an opportunity to climate adaptation? As always, knowledge is power: a team of New York scientists has modelled future migration due to sea level rise in Bangladesh.

Drought: South Africa out, India in

Drought seems to be a trendy topic this month. South Africa has moved out of the national state of drought disaster and is moving on to resilience. At the same time, India is approaching a long term water crisis and a map of desertification by the EU Joint Research Centre shows building pressures on the world’s resources.

Somewhat reassuring is the opportunity for mitigation that MIT researchers give us. They conclude that climate action can limit Asia’s growing water shortages.

This month a lot was written on climate change adaptation, but as well as disaster risk reduction and sustainability. I would like to highlight this one question: What’s the right goal – resilience, well-being or transformation?

Go ahead and explore:

The Fuego Volcano Eruption and Adaptation

Fuego volcano: the deadly pyroclastic flows that have killed dozens in Guatemala at The Conversation

How Guatemala has dealt with volcanoes over the centuries by Sophie Brockmann at The Conversation

From Kilauea to Fuego: three things you should know about volcano risk by Heather Handley at The Conversation

After volcano eruption, Guatemalans lead their own disaster recovery by Walter E. Little at The Conversation

Migration due to Climate Change and Natural Hazards

Problem to opportunity: migration in times of climate change by Arthur Wyns at The Ecologist

World wakes up to climate migration by Harjeet Singh at India Climate Dialogue

Universal migration predicts human movements under climate change by Simon Davies at Physics World

How Will People Move as Climate Changes? At State of the Planet

Droughts

India faces worst long term water crisis in its history -government think tank at Thomson Reuters Foundation

National state of the drought disaster expires at South Africa news

Is Australia’s current drought caused by climate change? It’s complicated at The Conversation

New World Atlas of Desertification shows unprecedented pressure on planet’s resources at the European Commission Joint Research Centre

Climate action can limit Asia’s growing water shortages at ScienceDaily

Sustainability

Science migrations hold the stage at èStoria, Gorizia at The World Academy of Sciences

What’s the right goal – resilience, well-being or transformation? By Laurie Goering at Thomson Reuters Foundation

Climate Change Adaptation

Alien apocalypse: Can any civilization make it through climate change? At ScienceDaily

Economic models significantly underestimate climate change risks at the London School of Economics and Political Science

Better be safe than sorry: Economic optimization risks tipping of Earth system elements at ScienceDaily

 

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev& Facebook.

New mining frontiers: Digging into the unknown

New mining frontiers: Digging into the unknown

While climate change occupies the headlines as our biggest long-term concern for sustainability,  there may well be further anthropogenic challenges that arise in the next century as we disrupt the delicate interplay of natural ecological and geological cycles to satisfy the need for resources of our ever-growing population. The mining industry makes for a pertinent example: it sits on the verge of new key locations for digging – from the deep ocean to deep space – the consequences of which may not be fully explored.

The shift to a low-carbon economy is likely to entail an increase in demand for a wide variety of minerals. A 2017 report from the World Bank highlights the growth in demand for Lithium, Platinum and Lead, for new battery technology and rare earth element demand for solar and wind technology is also likely to increase.

As demand for these metals and resources rises, the cost and difficulty of extracting them rises too. Millennia of mining have exhausted the easy-to-access deposits for most metals, and the ratio of exploration sites that turn into actual mines is in the order of 1 in 1000. Combined with a decline in the overall quality of ore that is mined, it’s not hard to see why mining industry strategists are looking to previously unusable locations for their new mining ventures.

Geologists have known for a long time that the sea floor contains extensive mineral deposits of a wide variety of types; from ferro-manganese nodules to ores linked to submarine volcanism, economic minerals are spread across the global ocean floor. Until recently, the economics of dredging these sea beds for minerals have not been favourable, and technology has been too rudimentary to make an effective industry out of this approach. Now, however, prices and demand for these minerals are high enough that seafloor mining is beginning to take place in a few locations around the world.

Extraction like this could, of course, have major consequences. Biodiversity in the deep ocean is, even today, poorly understood, so strip mining these systems before we explore them fully could cause untold damage. At a small scale, this kind of mining might only have more limited, local impacts, but for the first time in the history of human society we have the capability to affect biological systems and geological cycles at a global scale, to a degree that might have significant and deleterious effects.

For example, mining waste on land can lead to contamination of local water supplies with acidic runoff. Deep sea mining could similarly lead to acidification of sea water, which could have far reaching consequences. Marine creatures living in the ocean are often very finely tuned to the chemistry of the water they’re bathed in; even small changes in acidity have been linked to increased coral bleaching and death. The risk of heavy metal pollution has also been pointed out from sand and mud kicked up by mining activity as it disturbs the sea bed; these toxic metals could cause problems both the sea life and to humans, as the fishery stocks would become increasingly exposed to heavy metals. The global extent of ocean currents mean that these effects wouldn’t be limited to the vicinity of the mining, as chemicals would be mixed into the whole ocean over time.

Unlike mining on the surface, the spread of this kind of pollution could be truly global; ocean currents could eventually spread the pollutants, and the mining itself would hardly be limited to a specific locality. Humans are poorly positioned to deal with this kind of crisis; a negative impact on the ocean – a global resource, not owned by any individual nation state – is a classic ‘tragedy of the commons’, much like carbon dioxide accumulation in the atmosphere. Given the lack of ownership of the oceans, individual states or mining companies lack strong incentives to regulate the exploitation of such sea-floor resources. Moreover, the globalised nature of the extractive industry means this could be a truly significant impact; the combined revenue of the top 40 surface mining companies is approximately half a trillion dollars, dwarfing all but the largest national economies, affording such corporations major financial clout to explore and develop mining on the sea floor.

At the dawn of the fossil fuel era in the Industrial revolution, the risks of burning coal, and later oil and gas, were poorly understood in comparison to today. Some authors suggest that since we are now much more aware of environmental issues, we are better placed to assess the future risks and rewards of deep sea mining than the earlier resources for which we mined and drilled.

It is perhaps worth pointing out, though, that with the range out impacts still poorly constrained even as dredging begins, it is incumbent upon geologists to explore and quantify the potential risks; academic research must keep pace with the growth of industry.

Even if deep sea mining does not have major, long-lasting impacts, there is one other mining frontier for which the risks are nearly totally unconstrained: asteroids.

It may sound like science fiction, but serious consideration is being given to mineral resources on near Earth asteroids. Given their potential value (some estimates – of the asteroid Psyche suggest mineral resources worth a quintillion dollars – an amount of money that’s basically inconceivable), it’s not surprising that enterprising drillers are looking up, as well as to the sea floor. Again, though, research into the potential geological hazards needs to be undertaken well before such ventures are carried out.

Our ever increasing environmental footprint has the potential to spread to new and poorly studied horizons, and we should endeavour not to make the same mistakes as we did with fossil fuels.

Robert Emberson is a science writer, currently based in Vancouver, Canada. He can be contacted via Twitter (@RobertEmberson) or via his website (www.robertemberson.com).

**This article expresses the personal opinion of the author. These opinions may not reflect official policy positions of Geology for Global Development.**

Circular economy of metals and responsible mining

Circular economy of metals and responsible mining

In today’s post, Bárbara Zambelli, considers how we can transition business models towards a more sustainable way of living, manufacturing and consuming.

As I mentioned before in my post about Urban Geology and Underground Urbanisation, according to the UN report, the current world population of 7.6 billion is expected to reach 8.6 billion in 2030 and 9.8 billion in 2050. In addition, the percentage of the world’s population living in urban areas is growing steadily. In this scenario, it is possible to state that population growth and urbanisation are strongly correlated to mineral and metal consumption. In developed countries, the demand for metals is expected to remain strong to keep up with modern technologies and, in developing countries, due to rapid industrialisation and urbanisation.

Minerals and metals are required as materials for infrastructure and constructions (e.g. aggregates, cement, iron, steel, aluminium, copper, alloys), implements for agriculture (e.g. phosphorus and limestone) and essential components of “green” technologies such as solar panels and wind energy (lithium, cobalt, cadmium, REE). The increased consumption we face nowadays requires a great amount of metals which cannot be supplied by natural resources. We already consume more than we can replace and our finite resources are being depleted.

In this context, circular economy represents a way of conceptualizing and operationalizing the transition of business models towards a more sustainable way of living, manufacturing and consuming.

What is circular economy?

Generally, it can be understood as a “cyclical closed-loop system”.

The United Nations Environmental Programme defines circular economy as “one which balances economic development with environmental and resource protection, with the aims to ‘design out’ waste, return nutrients and recycle durables, using renewable energy to power the economy”.

A really interesting paper discusses the concepts and applications of circular economy in Global context, its tensions and limitations.

The authors proposed the redefinition for circular economy as “an economic model wherein planning, resourcing, procurement, production and  reprocessing are designed and managed, as both process and output, to maximize ecosystem functioning and human well-being”.

Circular economy opposes the model of linear economy, in which natural resources are turned into waste via production. It assumes unlimited supply of natural resources and unlimited capacity of the environment to absorb waste. On the other hand, circular economy is conceived as having no net effect on the environment, furthermore, it ensures little generation of waste during the production process. The circular economy relies on the idea of recycling products, using waste as resources, helping to tackle unsustainable patterns of production and consumption.

China is the pioneer in the implementation and development of circular economy strategy at national level. With almost 1.4 billion people (around 19% of the world figure), it is of vital interest worldwide that China adopts economic and sustainable business practices. Moreover, other parts of the world are adopting the concept of circular economy to keep resources in economic use for as long as possible. To give some examples, there is the UK initiative Ellen MacArthur Foundation, founded in 2010. In 2014, the European Commision launched  their own programme named Towards a Circular Economy: a zero waste programme for Europe. In Brazil also there are projects like this, developed into the Federal University of Santa Catarina to promote the circular economy.

However circular economy may seems to solve our problems regarding raw materials and metals supply, that are some important points to highlight. It is crucial to take into account the metal cycles and flows in the system of each metal to understand the environmental impacts associated to each phase of the cycle, since raw material extraction to the end of life. Another important feature is that circular economy relies on metallurgy, technology and understanding of product design (mineralogy). The recovery rate of each metal depends on the combination of those three factors. In addition, there are some companies recycling atoms for some metals, although these processes are energy-intensive and recover the metals part-only.

Despite the idea of designing products that last much longer appears useful, longevity is not always efficient ecologically. The issue of flux should be central and procrastinating the cycle through exotic chemistry may not be an appropriate strategy.

Finally, even though circular economy has an amazing potential for reducing the need of raw materials, stop mining primary resources is nearly impossible. In this manner, we should promote responsible mining when circular economy is not applicable.