Geology for Global Development

Communication

Rainfall related geohazards: floods, landslides and mudslides in Rio – A dangerous combination of nature and human-related factors

Rainfall related geohazards: floods, landslides and mudslides in Rio – A dangerous combination of nature and human-related factors

Rainfall-related geohazards in Brazil’s poorer, mountainous city margins could be mitigated using better urban planning and communication. Our own Brazilian blogger Bárbara Zambelli Azevedo explores the problem and possible solutions.

I come from Brazil, a country well-known for its beautiful landscapes, football and carnival. Ok, some stereotypes are true, indeed.

Situated in the middle of the South American tectonic plate and away from geohazards such as earthquakes, volcanoes and tsunamis, this tropical country may seem like paradise to some. However, we are not completely safe from geohazards.

Every year during the summer, which is a heavy rain season, many lives are lost, and people are displaced by floods, landslides and mudslides all over the country. I want to give a particular focus on the state of Rio de Janeiro, where a summer storm killed at least 6 people on the 6th of February this year. I should mention that it was not an isolated event at all.

The situation of the state of Rio de Janeiro is complicated, and its analysis should take into consideration the geomorphology of the area, its climate and – importantly – urban planning.

According to the Brazilian Geological Survey, the bedrock in the area is composed mainly of igneous and metamorphic rocks, and the relief is characterised by steep mountain slopes over 2,000 m, alternated with sedimentary basins.

In 2011 floods, landslides and mudlslides resulted in 903 deaths and over 2,900 people had their homes destroyed

These mountains are a part of a major structure named Serra do Mar (Sea Ridge), a 1,500 km long system of mountain ranges and escarpments parallel to the Atlantic Ocean, running from Rio de Janeiro State until Santa Catarina, in the south of Brazil. Geomorphological features seen today started to form during the opening of the Atlantic Ocean during the Cretaceous, were consolidated throughout the Tertiary and still are modified by erosional and sedimentary events.

The climate is described as tropical in coastal areas such as Rio de Janeiro City and Angra dos Reis. It is warm and humid all year round, with a mean temperature around 23°C and an average annual precipitation of 1,300 mm. The rain season occurs in the summer (Dec-Mar) when 45% of precipitation falls.

In mountainous areas such as Nova Friburgo and Teresópolis, the climate is characterised as temperate. Temperatures are milder at an annual mean of 18°C and the average annual rainfall is 1700 mm, with 59% falling in the summer months of December to March. Therefore, extreme rainfall events are not rare, and they are usually associated with floods and landslides.

The worst weather-related natural hazard-induced disaster in Brazil happened in January 2011, when it rained 166 mm in a 24 hour period in the Serra dos Órgãos region, which is a local denomination of Serra do Mar. Six cities were affected by floods, landslides and mudslides: Teresópolis, Petrópolis, Nova Friburgo, Bom Jardim, Sumidouro and São José do Vale do Rio Preto. These flows resulted in 903 deaths and over 2,900 people had their homes destroyed.

A year earlier the state of Rio had been the scene of another tragedy. It was New Year’s Eve and the city of Angra dos Reis was full of tourists. After intense rainfall, many mudslides were triggered and left at least 44 people dead. Such events repeat themselves every year.

Satellite imagery of the 2011 mudslides in Nova Friburgo - before and after. Via Google Earth, collected in 2019.

Satellite imagery of the 2011 mudslides in Nova Friburgo – before and after. Via Google Earth, collected in 2019.

Just like Rio, most Brazilian cities lack urban planning and settlements are segregated socio-economically. Usually an impoverished population is pushed to marginalised areas of cities, which are usually steep and mountainous areas where the risk of landslides is higher.

In this article geologist and former president of the Institute of Technological Research of São Paulo Álvaro Santos states that only few Brazilian geohazards are triggered exclusively by nature.

In fact, most of our geological and hydrological issues are, somehow, led by poor land-use management, both in cities and in the countryside. Santos also explains that tragedies related to rainfall are usually caused by a lack of land-use planning and housing, and inefficient government communication.

We must learn from our own history and examples from other places like Indian Chennai and Tamil Nadu to tackle the challenge elevated hazard risk in city margins. A good starting point is raising the awareness of the population living in high-risk areas by using geoscience education and science communication.

Geoprevention aims to raise the awareness of the local community about geotechnical and environmental risks such as floods, landslides, infiltration, river erosion and sedimentation and waste disposal

We have a good example from the city of Curitiba, where students from the Federal University of Paraná developed a project titled GeoPrevention. This project aims to raise the awareness of the local community about geotechnical and environmental risks such as floods, landslides, infiltration, river erosion and sedimentation and waste disposal. The students use didactic material like folders, manuals, booklets and provide mini-courses and lectures about these topics with a playful character that is easily understood.

This initiative is important because it provides an interdisciplinary dialogue between a university and civil society, in particular, the population affected by those geohazards, to recognise and avoid them at the individual level.

At a higher level, we need governments and policy-makers to take action on effective urban planning and risk management, and invest more in the prevention of rainfall-related geohazards than on their remediation.

In addition, the active participation of civil society and the private sector is crucial to building resilient societies. Technological innovations such as the internet of things and dashboards should also be used to improve disaster prediction and population warning.

The city of Rio de Janeiro has two big data operation centres, the Operation Centre and Integrated Centre of Command and Control, both launched before World Cup which granted Rio the title of “World Smart City” in 2013.

The centres improved disaster management by mapping areas with high risk of flood-related landslides and implementing a critical early warning and evacuation system for Rio’s favelas. However, according to this article, they have failed at “go[ing] beyond high-tech marketing rhetoric and help[ing] real people living in the city”.

Even though it is very complicated and takes time to solve the problem of rainfall-related hazard risk in city margins, it must start sometime: why not now?!

Private solutions, public science: how to bridge the gap?

Private solutions, public science: how to bridge the gap?

The urgency around many sustainability issues leads some billionaire investors to throw caution in the wind, frustrated with the pace of academic research. Robert Emberson sympathises with private projects like the Ocean Cleanup, even when things go wrong. ‘How’, he asks, ‘might we build a constructive bridge between ambitious entrepreneurs and scientific sceptics? ‘

Reading and writing about sustainable development in 2019 can be tough going, with a seemingly unending series of headlines suggesting that we as a society are lagging behind in the race to achieve our goals and that the deleterious effects of climate change are looming closer and closer, if not already upon us.

So when good news of any kind comes along, it can often be something to cling to – and perhaps even more devastating if that news is not what it seems. This up and down emotional trajectory describes my response to the clean-up operation launched last year to remove the plastic waste from the ‘Great Pacific Garbage Patch’, which ran into difficulties early this year.

The story is not yet over, though, and there are lessons to be learned for scientists working on issues related to sustainability more generally – so perhaps a positive outcome is still to come.

For those unaware, plastic pollution, both small and large, often ends up in the ocean, where gyres – or ocean currents – preferentially carry the waste products to certain areas, where it accumulates. These patches are hard to delineate, since unlike the images of islands of plastic bottles and grocery bags sometimes portrayed in the media, the plastic concentration is relatively low (4 particles per cubic metre), but the patch – which may be as large as 15,000,000 square kilometres – likely represents the largest waste accumulation in the ocean.

The open ocean, while home to diverse ecosystems and vitally important to many food networks, is a challenging thing to govern. Since it is not owned by any given country, the responsibility to clean up waste accumulating within the seas is nigh on impossible to assign. It’s a classic problem of ‘the commons’ – shared resources, like the ocean or the atmosphere, that many users need but none own, can be overexploited and depleted. Resolving those issues can be challenging at best.

For some scientists, problems with the system had been evident from the start

So, in 2012, enter the Ocean Cleanup Project. At a TED talk, the 18-year-old inventor Boyan Slat laid out a plan to use floating booms to gradually gather up the waste in an efficient manner. Investors were intrigued, and the project took off quickly; billionaires funding it allowed for it to be deployed in mid-2018, rapid progress by any standard. The clean-up attempt had begun in earnest.

Quickly, though, problems arose; the system of floating booms couldn’t withstand the storms in the open ocean, and by January 2019 the first clean-up system had been towed to Hawaii for repairs after teething problems.

For some scientists, problems with the system had been evident from the start. Kim Martini and Miriam Goldstein, research oceanographers unaffiliated with the project, analysed the project and found major issues. While there was communication between the scientists and the engineers involved with the project, and some of the issues raised were addressed, the two oceanographers still maintained that while the aim was laudable, the design was not as accomplished. Despite this, the project went ahead, and the concerns of the scientists proved to be well founded.

Clearly, this is a well-intentioned project. But perhaps just as clear is that a communications gulf existed between the scientists and the project developers. And therein lies the key question: how can scientists involved in sustainability issues best communicate their thoughts to private sector projects aiming to solve those issues? It certainly seems unlikely that the Ocean Cleanup will be the last case where such communication matters.

Indeed, it’s not surprising that in some cases private investors and entrepreneurs have stepped in with big ideas to solve problems of the commons. It’s clear that in many cases billionaires have lofty ambitions beyond the business that made them rich – both Jeff Bezos at Amazon at Tesla’s Elon Musk have moved into space exploration, and for individuals with such a mindset the idea of ‘saving the world’ might well appeal. They may also consider themselves less limited by regulation and national borders than scientists and government.

In fact, there’s more than just regulation and borders that hold back some ideas. The precautionary principle, both in unwritten and legal contexts, prevents some action where it is unclear if that action could result in harm to the public. This is often applied to geoengineering ideas, since the long-term implications may not be well known. A private project to dump iron sulphate into the ocean to encourage plankton growth and thus a draw-down of Carbon Dioxide in 2012 was cited as falling foul of these principles, having not established the long-term risk of seeding the ocean in this way.

The slower pace of academic research, …, makes it ever more appealing for private individuals to skip those steps and spend a fortune to fix something now, rather than wait until it’s too late

At the same time, however, there is an increasing sense of urgency around many sustainability questions. The slower pace of academic research, the painstaking process of ensuring reproducibility in findings, and the need to establish long term effects of potential solutions to climate or sustainability issues makes it ever more appealing for private individuals to skip those steps and spend a fortune to fix something now, rather than wait until it’s too late.

I can sympathise with that view. It’s well-meaning, and solving a problem is better than sitting on the sidelines, or worse profiting from it. Moreover, hindsight is 20:20, so if a solution only becomes problematic after it is deployed, then those behind it can always argue that they did what they could in advance. That must be balanced though with an abundance of caution, and perhaps this is where scientists can help.

I would argue that we should be realistic – solutions will come from all sectors of society, and private individuals and entrepreneurs may well be the ones leading the charge. While it shouldn’t be incumbent upon research scientists alone to ensure their voices are heard by private projects, we shouldn’t shy away; building bridges, especially in the form of communication channels, would be of great benefit. Goldstein and Martini did a great service to science by reaching out and making their voices heard, even if they might have been perceived as naysayers.

We might not be able to change the minds of those leading private initiatives, but we can at least provide them with the most information possible to make their decisions.

Robert Emberson is a Postdoctoral Fellow at NASA Goddard Space Flight Center, and a science writer when possible. He can be contacted either on Twitter (@RobertEmberson) or via his website robertemberson.com

The ethical questions behind the school climate strike. Do we have a place in earth’s ecosystems? Jesse Zondervan’s February 2019 #GfGDpicks #SciComm

The ethical questions behind the school climate strike. Do we have a place in earth’s ecosystems? Jesse Zondervan’s February 2019 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. This month’s picks include: The ethical questions behind the school climate strike; Military worries about the fight against sea-level rise – how will you help? Do we have a place in earth’s ecosystems?

School climate strikes

As school climate strikes inspired by Greta Thunberg spread across the world in the past month, adults are starting to ask ethical questions.

If one would prefer climate activism to focus on conventional electoral politics, rather than civil disobedience, Rupert Read argues one should question the premise that our societies are fully democratic. If adults have failed, how can we support and listen to our children rather than telling them what to do?

The idea that young people are the key to making positive change to the way we live in our environment is not a new one, but did you ever wonder why? Steve Cohen at Columbia University’s Earth Institute considers how the experiences of the next generation support a survivalist ethic and a change in environmental politics.

The fight against sea-level rise

If the urgency displayed by our children leaves you hungry to roll up your own sleeves, paradoxically it may appear you could help by joining the army to help fight sea-level rise. At a conference on climate change and security at The Hague defence leaders from around the world expressed worry not only for a risk for conflict risks but also of stress on military capacity in all countries with a coastline, not just the poorer nations.

Alternatively, if you have a more entrepreneurial spirit, I would recommend looking at entrepreneurial opportunities for addressing climate change in the developing world.

Sea-level rise and it’s cost is a hot topic this month, with climatologist Radley Horton testifying on capitol hill about sea level rise.

“There has been a lot of focus on whether worst-case scenario for 2100 is 4.3 feet, six feet, or even eight feet of sea level rise,” he said. “Even the most optimistic scenario imaginable—of one foot of sea level rise by 2100—would have direct and profound impacts.”

Indeed, the house market has already responded and cost US coastal home owners nearly 16 billion in property value. Buyout programs in flood-prone areas are becoming more common, even as they come with their own shortcomings.

The insurance industry recognises that investors, lenders, insurers and policymakers undertake significant risk management efforts to minimise rising losses from climate-related hazards. Might more geoscientists be needed here?

As usual, I have many more interesting topics on offer for you, such as: humans have been present in ecosystems for a long stretch of time, so is there a place for us? Check out all stories below!

School climate strikes – an ethical debate

School climate strikes: why adults no longer have the right to object to their children taking radical action by Rupert Read at The Conversation

Youth Strike for Climate and the Ethics of Climate Policy by Steve Cohen at State of the Planet

Climate Adaptation

How Entrepreneurs Can Help Developing Countries Hard Hit by Climate Change by Georgina Campbell Flatter at Entrepeneur

Prepare now for accelerating climate threats, military officials warn by Laura Goering at Thomson Reuters Foundation

There’s a place for us: New research reveals humanity’s roles in ecosystems from the Santa Fe Institute at ScienceDaily

Sand from glacial melt could be Greenland’s economic salvation from University of Colorado Boulder at ScienceDaily

Climate Change Is Having a Major Impact on Global Health by Tanya Lewis at Scientific American

How pollution and greenhouse gases affect the climate in the Sahel by Alessandra Giannini at The Conversation

Investors and lenders need better tools to manage climate risk to homes, mortgages and assets, finds new research at the Cambridge Institute for Sustainability Leadership

The fight against sea-level rise

Lamont Climatologist Testifies on Capitol Hill About Sea Level Rise by Marie Denoia Aronsohn at State of the Planet

Rising Seas Soaked Home Owners for $16 Billion over 12 Years by Thomas Frank at E&E News

Leave No House Behind in Flood Buyout Programs, Group Says by Daniel Cusick at E&E News

What rising seas mean for local economies from Stanford University at ScienceDaily

Predicting impacts of climate change

The Ocean Is Running Out of Breath, Scientists Warn by Laura Poppick at Scientific American

Disaster Risk

Large-scale hazard indication mapping for avalanches at the Institute for Snow and Avalanche Research SLF

Norway’s Arctic islands at risk of ‘devastating’ warming: report by Alister Doyle at Thomson Reuters

Observing Volcanoes from Space by Emily Underwood at EOS Earth and Space Science News

The U.S. May Finally Get an Early Warning System For Volcanoes by Robin George Andrews at Earther

Deep sea mining

Deep sea mining threatens indigenous culture in Papua New Guinea by John Childs at The Conversation

 

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.

What is happening after the Fuego eruption in Guatemala? Is climate migration a bad thing? This and more in Jesse Zondervan’s June 2018 #GfGDpicks #SciComm

What is happening after the Fuego eruption in Guatemala? Is climate migration a bad thing? This and more in Jesse Zondervan’s June 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

Everything about the Fuego eruption

At the start of this month, Guatemala’s Fuego volcano erupted explosively, costing many lives and destroying properties and infrastructure.

Professor Handley from Macquarie University explains why the eruption was so disastrous, while Professor Little notes the recovery efforts Guatemalans make on their own, without much government input. Sophie Brockmann delves into history and recovers the cultural significance and political intricacies of Guatemalan dealings with volcanoes.

Climate migration: is it a bad thing?

While the world wakes up to the magnitude of climate migration, a key question we will need to ask is: does climate migration pose a problem or an opportunity to climate adaptation? As always, knowledge is power: a team of New York scientists has modelled future migration due to sea level rise in Bangladesh.

Drought: South Africa out, India in

Drought seems to be a trendy topic this month. South Africa has moved out of the national state of drought disaster and is moving on to resilience. At the same time, India is approaching a long term water crisis and a map of desertification by the EU Joint Research Centre shows building pressures on the world’s resources.

Somewhat reassuring is the opportunity for mitigation that MIT researchers give us. They conclude that climate action can limit Asia’s growing water shortages.

This month a lot was written on climate change adaptation, but as well as disaster risk reduction and sustainability. I would like to highlight this one question: What’s the right goal – resilience, well-being or transformation?

Go ahead and explore:

The Fuego Volcano Eruption and Adaptation

Fuego volcano: the deadly pyroclastic flows that have killed dozens in Guatemala at The Conversation

How Guatemala has dealt with volcanoes over the centuries by Sophie Brockmann at The Conversation

From Kilauea to Fuego: three things you should know about volcano risk by Heather Handley at The Conversation

After volcano eruption, Guatemalans lead their own disaster recovery by Walter E. Little at The Conversation

Migration due to Climate Change and Natural Hazards

Problem to opportunity: migration in times of climate change by Arthur Wyns at The Ecologist

World wakes up to climate migration by Harjeet Singh at India Climate Dialogue

Universal migration predicts human movements under climate change by Simon Davies at Physics World

How Will People Move as Climate Changes? At State of the Planet

Droughts

India faces worst long term water crisis in its history -government think tank at Thomson Reuters Foundation

National state of the drought disaster expires at South Africa news

Is Australia’s current drought caused by climate change? It’s complicated at The Conversation

New World Atlas of Desertification shows unprecedented pressure on planet’s resources at the European Commission Joint Research Centre

Climate action can limit Asia’s growing water shortages at ScienceDaily

Sustainability

Science migrations hold the stage at èStoria, Gorizia at The World Academy of Sciences

What’s the right goal – resilience, well-being or transformation? By Laurie Goering at Thomson Reuters Foundation

Climate Change Adaptation

Alien apocalypse: Can any civilization make it through climate change? At ScienceDaily

Economic models significantly underestimate climate change risks at the London School of Economics and Political Science

Better be safe than sorry: Economic optimization risks tipping of Earth system elements at ScienceDaily

 

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev& Facebook.