Geology for Global Development

Climate change

What would you do in the minute before an Earthquake? Do our planet’s environmental limits hamper socio-economic development? Find out in Jesse Zondervan’s Feb – Mar 7 2018 #GfGDpicks #SciComm

What would you do in the minute before an Earthquake? Do our planet’s environmental limits hamper socio-economic development? Find out in Jesse Zondervan’s Feb  – Mar 7 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

In the late afternoon of 16 February people in Mexico City celebrate Chinese New Year when they hear an earthquake alarm. If you ever wondered what it is like to experience an earthquake, you should watch the videos in Austin Elliot’s The Trembling Earth blog. What do people do in the 78 seconds of earthquake early warning?

Next to stories on risk of landslide-induced floods in Papua New Guinea, the cost of waiting for a volcanic eruption to happen and other disaster risk discussion, this month is full of good articles on sustainability:

Earth has environmental limits, can we all live a good life in it?

Dan O’Neill from the University of Leeds notes that to achieve social thresholds, countries have needed to exceed multiple biophysical boundaries. He asks how we can ever live well within our planet’s natural boundaries and what this means for sustainable development.

Professor Steve Cohen at Columbia University’s Earth Institute sees a trend that may help with this sustainability problem. An increasing number of young people are drawn to sustainability education and the role of the sustainability professional is emerging. Steve argues these sustainability professionals must be scientifically literate and focus on the physical world.

More in this month, entrepreneurs start seeing opportunities in predicting climate change risks, geologists have found rock containing plastic, and a new massive open online course (MOOC) encourages its students to play a disaster risk reduction game.

As always, there’s a lot to read this month. This time I highlighted in bold the articles I think you should read first, so go ahead!

Sustainability

Is it possible for everyone to live a good life within our planet’s limits? By Dan O’Neill at The Conversation

The Emerging Sustainability Professional by Steve Cohen at State of the Planet

What does climate change hold in store for European cities? Creating a guidebook for the future & Envisioning climate-friendly cities at Future Earth

Geopolicy: Combating plastic pollution – research, engagement and the EU Plastic Strategy by Chloe Hill at EGU’s GeoLog blog

How can studying the past, such as life in Maya cities, help the world to solve modern problems? See ‘Creating a guidebook to the future’ Credit: VoY-TeC (distributed via Flickr CC BY-NC 2.0)

Climate Change Adaptation

What Land Will Be Underwater in 20 Years? Figuring It Out Could Be Lucrative by Brad Plumer at The New York Times

Why scientists have modelled climate change right up to the year 2300 by Dmitry Yumashev at The Conversation

Can Soil Help Combat Climate Change? By Renee Cho at State of the Planet

The Challenges of Drought Prediction by Zengchao Hao at Eos

What are the challenges of drought prediction? Credit: PublicDomainPictures/18042 images (distributed via Pixabay [CC0 1.0])

Education/communication

New Massive Open Online Course on Natural Disasters at Eos

Citizen outreach and river education in India by Beth Fisher at Little River Research

The Complex Interface between the Public and Science by Cary Funk at Scientific American

Volcanic risk

Rehearsing for eruptions by Jessica Ball at the AGU’s Magma Cum Laude

The Costs Of Waiting For A Volcano To Erupt by Dr Peter Ward at Forbes

Earthquake risk

78 seconds of Earthquake Early Warning by Austin Elliot at the AGU’s The Trembling Earth

Damage Assessment by Laser Could Focus Postearthquake Response by Laura G Shields at Eos

How do you plan for volcanic hazards? How much does it cost? Credit: Kanenori/260 images (distributed via Pixabay [CC0 1.0]). 

Disaster Risk

An emerging crisis? Valley blocking landslides in the Papua New Guinea highlands by Dave Petley at the AGU’s The Landslide Blog

Creeping danger: Landslide threatens Peruvian village, especially when the earth quakes by Jane Palmer at Earth Magazine

Geophysicists and atmospheric scientists partner to track typhoons’ seismic footprints at Science Daily

UN launches effort to collect data on disaster losses at UNISDR

External Opportunities

Online Course Environmental Justice starts 12 March at Earth System Governance

Call for Papers – 2018 Utrecht Conference on Earth System Governance at Earth System Governance

Columbia Center on Sustainable Investment Seeks Interns for Summer 2018 at State of the Planet

New and Returning Employers at All Ivy Career Fair Indicate Growth in the Sustainability Job Market at State of the Planet

Check back next month for more picks!

Follow Jesse Zondervan on Twitter: @JesseZondervan.
Follow us on Twitter (
@Geo_Dev) & Facebook.

 

Heather Britton: China’s Water Diversion Project

Heather Britton: China’s Water Diversion Project

China has enjoyed economic growth over the past decades, bringing undoubted prosperity to the country. But exponential industrialisation and rapid growth comes at a significant environmental cost. The nation is heavily dependent on coal-fired power, making it one of the world’s largest emitters of greenhouse gases and it’s thirst for development is a drain on vital resources, including water. In today’s post, Heather explores how China’s geography accentuates an anthropogenic problem. 

When travelling from the North to the South of China there are number of trends that can be observed – dialects change, the dominance of noodles is replaced with a preference for rice and, crucially, the climate becomes more humid. The South typically receives excessive rainfall, often leading to devastating flooding, whilst the North dries due to the thirst of industry and a booming population. China’s water diversion project aims to solve both problems with one monumental feat of engineering – by diverting 44.8 billion cubic metres of water annually from South to North via a network of canals and tunnels. I’ll explore the impact that this is having on China and its people, and whether it is a sustainable solution to the disparity in water supply across the country.

Water shortage is a constant concern in the North, with the groundwater stores that support the region dwindling to a fraction of what is required to allow the cities and industries centred here to thrive. In addition, more than half of China’s 50,000 rivers have disappeared in the last 20 years. Having experienced unprecedented economic growth over the past few decades, Beijing is on the brink of a water crisis. In the South, flooding is the primary hydrological issue, exacerbated by the drainage of lakes and the damming of rivers for construction. It was commented in the 1950s by Chairman Mao that ‘The south has plenty of water, but the north is dry. If we could borrow some, that would be good’. This statement is heralded as the idea that has grown to become what is now ‘The world’s most ambitious water-transfer program’.

The project is not merely a fantasy – construction on a number of the pathways is already complete or nearing completion, and already over 70% of Beijing’s water is transferred from the South as a result of this project. Costing $62 billion, there is a clear driving force for the project – the thirsty North is running out of water fast, and although an extreme move, it is true that this project will provide some vestige of relief – but for how long, and at what cost?

Millions have benefitted from the water transfer and it certainly is a solution to the disparity in water supply between the North and the South of the country, but it is also arguably one of the worst. China’s demand for water is growing so quickly that even before the project’s completion in 2050 further solutions are likely to be required, and industrialisation along diversion routes poses a serious pollution threat. Salinization  of some waters heading North seems inevitable. An even larger concern is that the South may no longer have enough water to spare – the Han river, an important tributary to the Yangtze, is planned to have 40% of its water diverted to the North, but the towns and cities situated along its course are already experiencing water shortages. Furthermore, 345,000 villagers have been displaced from their homes to make way for the new water courses, often to lands and property far inferior to what they were promised and what they left behind. It is clear that the project is far from sustainable.

It would be wrong, however, to say that the Chinese government is doing nothing to reduce the impact of the scheme. Addressing environmental concerns in the Danjiangkou reservoir, a $3 billion ecological remediation package has been put together, and the water diversion project has allowed the groundwater reservoirs in Beijing to rebound by at least 0.52m. The environmental threat persists, however, and it seems unlikely that retrospective measures will be able to dissipate all of the environmental risk. By considering more sustainable solutions, the impact on the land and the people of China could have been drastically reduced. The Chinese vice minister of Housing and Urban-rural development has called the project unsustainable, acknowledging that, in the case of many cities, recycled water could replace diverted water. If efforts were focussed on water desalination technology and the collection of more rainwater, rather than the creation of multiple colossal aqueducts with unsavoury environmental consequences, then water resource management could be tackled in a far more sustainable manner.

Effective water conservation is something that is becoming a larger and larger problem for the Global South, particularly in the drier parts of the world. The water diversion project acts as an interesting case study, and shows the repercussions of dramatic engineering solutions to water resource problems. Although possible from an engineering perspective, forcing a change in the hydrological system of a country is rarely without its complications (and substantial expense). Lessons can be learned from the water diversion project, and future Global South nations should think twice before entering into any project of such scale without considering the full implications or other, more sustainable options. Doing this would help towards the achievement of UN Sustainable Development Goals 11 (sustainable cities and communities) and 6 (clean water and sanitation).

Saltwater intrusion: causes, impacts and mitigation

In many countries, access to clean and safe to drink water is often taken for granted: the simple act of turning a tap gives us access to a precious resource. In today’s post,Bárbara Zambelli Azevedo, discusses how over population of coastal areas and a changing climate is putting ready access to freshwater supplies under threat. 

Water is always moving downwards, finding its way until it gets to the sea. The same happens with groundwater. In coastal areas, where fresh groundwater from inland meets saline groundwater an interesting dynamic occurs. As salt water is slightly denser than freshwater, it intrudes into aquifers, forming a saline wedge below the freshwater. This boundary is not fixed, it shows seasonal variations and daily tidal fluctuations. It means that this interface of mixed salinity can shift inland during dry periods, when the freshwater supply decreases, or seaward during wetter months, when the contrary happens.

Freshwater and saltwater interaction. Credit: The National Environmental Education and Training Foundation (NEEF).

Once saline groundwater is found where fresh groundwater was previously, a process known as saltwater intrusion or saline intrusion happens. Even though it is a natural process, it can be influenced by human activities. Moreover, it can become an issue if saltwater gets far enough inland that it reaches freshwater resources, such as wells.

According to the UN report, about 40% of world’s population live within 100km from the coastline or in deltaic areas. A common source of drinking water for those coastal communities is pumped groundwater. If the demand for water is higher than its supply, as can often occur in densely populated coastal areas, the water pumped will have an increased salt content. As a result of overpumping, the groundwater source gets contaminated with too much saltwater, being improper for human consumption.

With climate change, according to the IPCC Assesment Reports, we can expect  sea-level to rise, more frequent extreme weather events, coastal erosion, changing precipitation patterns and warmer temperatures. All of these factors combined with the a increased demand for freshwater, as a result of global population growth, could boost the risk of saltwater intrusion.

Shanghai – an example of densely-populated coastal city. By Urashimataro (Own work) [CC BY-SA 3.0 ],via Wikimedia Commons.

Although small quantities of salt are important for regulating the fluid balance of the human body, WHO advises that consuming higher quantities of salt than recommended can be associated with adverse health effects, such as hypertension and stroke. In this manner, reducing salt consumption can have a positive effect in public health, helping to achieve SDG 3.

With the aim of preserving fresh groundwater resources for coastal communities at present and in the future, dealing with the threat of saline intrusion is becoming more and more important.

Therefore, to be able to mitigate the problem, first of all, it needs to be better understood. This can be done by characterising, modelling and monitoring aquifers, assessing the impact and then drawing solutions. Currently there are many mitigation strategies being designed worldwide. In Canada, for example, the adaptation options rely on monitoring and assessment, regulation and engineering. In the UK, on the other hand, the simpler solution adopted is reducing or rearranging the patterns of groundwater abstraction according to the season. In Lebanon, a fresh-keeper well was developed as an efficient, feasible, profitable and economically attractive way to provide localised solution for salination.

Every case should be analysed according to its own characteristics and key management strategies adopted to ensure that everyone has access to clean and safe water until 2030 – SDG6.

How deep-seated is bias against scientists in the Global South? Can we attribute individual disasters to climate change? Find out in Jesse Zondervan’s Dec 20  – Jan 24 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last four weeks:

If we want to solve the world’s problems, we need all the world’s scientists. Social Entrepreneur Nina Dudnik speaks out against prejudice towards scientists in the developing world. In her article, The Science Community’s “S**thole Countries” Problem, she will challenge many scientists’ own deep-seated bias.

Encouragingly, South African climate researcher Francois Engelbrecht got in the news recently. He developed a climate model, improving projections and supporting the vulnerable community in decision making.

One thing that I believed impossible, is attributing specific extreme weather events to climate change. Well, now it’s possible due to a breakthrough by climate scientist Myles Allen. Harevy reports on the rapidly expanding area of climate science.

Further in the news this month, is activity at the Mayon volcano in the Philippines, a 20-acre mega-landslide about to go in Washington State and the destruction caused by thawing permafrost in Alaska.

There’s a lot to read this month, so go ahead!

The Global South

The Science Community’s “S**thole Countries” Problem by Nina Dudnik at Scientific American

Homegrown African climate model predicts future rains – and risks by Munyaradzi Makoni at Thomson Reuters Foundation

Credit: Rhoda Baer (Public Domain)

 

Climate Change Adaptation

Scientists Can Now Blame Individual Natural Disasters on Climate Change by Chelsea Harvey at ClimateWire

Researchers explore psychological effects of climate change at ScienceDaily

Australia’s coastal living is at risk from sea level rise, but it’s happened before at The Conversation

Why Thawing Permafrost Matters by Renee Cho at State of the Planet

 

Activity at the Mayon Volcano & Other Volcanic Topics

Authorities waging war vs. fake volcanologists in social media by Aaron Recuenco at Manila Bulletin

Scientists monitor volcanic gases with digital cameras to forecast eruptions by Kimber Price at AGU’s GeoSpace blog

We’re volcano scientists – here are six volcanoes we’ll be watching out for in 2018 at The Comversation

Sustainable Cities

‘The bayou’s alive’: ignoring it could kill Houston by Tom Dart at The Guardian

‘Does Hull have a future?’ City built on a flood plain faces sea rise reckoning by Stephen Walsh at The Guardian

Education/Communication

From Natural Disasters to Other Threats, This Initiative Is Teaching Delhi Kids All About Safety by Rinchen Wangchuk at The Better India

Disaster Risk

Why the Swiss are experts at predicting avalanches by Simon Bradley at swissinfo

Tracing how disaster impacts escalate will improve emergency responses at UCL

Watching a Ridge Slide in Slow Motion, a Town Braces for Disaster by Kirk Johnson at The New York Times

The risk of landslides in Rohingya refugee camps in Bangladesh by Dave Petley at AGU’s The Landslide Blog

Deadly California mudslides show the need for maps and zoning that better reflect landslide risk by David Montgomery at The Conversation

Will Tehran be able to withstand ‘long overdue’ quake? By Zahra Alipour at Al-Monitor

Scientists to map quake-prone Asian region in hope of mitigating disaster by Michael Taylor at Thomson Reuters Foundation

How forests could limit earthquake damage to buildings by Edwin Cartlidge at IOP Physics World

Avalanches and floods, drawing by Johann Jakob Wick, 1586

 

External Opportunities

Get involved in knowledge in action

IRDR Young Scientists Programme: Call for application (3rd Batch)

Apply to join the Pressure Cooker event on Risk Communication at the 2018 Understanding Risk Forum

Vacancies: Two Research Positions on Climate & Development, The German Development Institute (DIE) Bonn

Call for applications for the Research School within the Mistra Geopolitics program

Australian Disaster Resilience Conference 2018

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.