EGU Blogs

Sedimentology

A much shorter review of flood stratigraphies in lake sediments

A much shorter review of flood stratigraphies in lake sediments

Earlier this year my PhD supervisors and I (Daniel) had a paper accepted for publication in Earth-Science Reviews entitled ‘Flood stratigraphies in lake sediments: A review’ (Schillereff et al., 2014). It’s been fairly popular in terms of downloads but it occurred to me the other day that many of those prospective readers may be put off somewhat by its hefty word count. Thus, putting together a shortened version outlining the main points and conclusions seemed wise!

The review stems from my PhD research investigating whether sediment cores extracted from UK lakes contain distinct layers deposited by severe floods that occurred in past decades or centuries. It follows many neat papers illustrating similar case studies from every continent bar Antarctica. (We’ve included a KML GoogleEarth file in the Supplementary Info enabling users to fly to the sites of each published palaeoflood record mentioned in the text).

[Read More]

Geology makes a difference to Society

The Geological Society of London have just today released a great report highlighting how geology contributes to our society.

All too often the impression is that all geologists do is study rocks. Whilst in essence, this is what we do, the implications of geological research are far reaching and not always understood by the wider public. I think this report is a fantastic piece of science communication (yes, I’m off again!) but more importantly, a great tool for all to appreciate just how important to our every day lives the study of Earth Sciences actually is.

In total, the report covers 12 areas  in which our understanding of geology shapes our daily lives. A maximum of 2 pages are dedicated to each topic, which makes for very clear, quick and easy reading. Topics covered include: Geoengineering, Energy, Geohazards, Climate Change and some unexpected ones: The Anthropocene and Valuing and protecting our environment. Of course, I have a favourite and you won’t be surprised, I’m sure, that it is the pages on Communicating geology: time, uncertainty and risk.

The Societies pages on how geology impacts on society can be found here and can be downloaded as a PDF too.

Credit: Wikimedia Commons, Author:  Alpsdake

Credit: Wikimedia Commons,
Author: Alpsdake

Credit: Wikimedia Commons. Author: R. Clucas. This image is in the public domain because it contains materials that originally came from the United States Geological Survey, an agency of the United States Department of the Interior.

Credit: Wikimedia Commons. Author: R. Clucas. This image is in the public domain because it contains materials that originally came from the United States Geological Survey, an agency of the United States Department of the Interior.

Credit: Wikimedia Commons. Author: de:Benutzer:Alex Anlicker

Credit: Wikimedia Commons. Author: de:Benutzer:Alex Anlicker

From mud to moai statue: lake sediments reveal new insights into Easter Island colonization

The small landmass of Easter Island (164 km2), the southeasterly point of Polynesia in the Pacific Ocean, has achieved iconic status in the world today as people wonder how its colonisation was physically possible by settlers journeying through the vast ocean in tiny boats, how and why the enormous moai s were constructed and, most infamously, to what extent they contributed to their own downfall through severe environmental degradation. This story has received a lot of attention, featuring in Jared Diamond’s eye-opening book ‘Collapse’ as well as National Geographic. (Check out the neat video embedded in the National Geographic article in which researchers replicate their theory on ‘walking’ the s).

The location of Easter Island related to South America. Used by permission of the University of Texas Libraries, The University of Texas at Austin.

The location of Easter Island related to South America. Used by permission of the University of Texas Libraries, The University of Texas at Austin.

Image of Easter Island from the Earth Observatory, NASA.

Image of Easter Island from the Earth Observatory, NASA.

Moai s at Rano Raraku, Easter Island. Source: WikiCommons

Statues at Rano Raraku, Easter Island. Source: WikiCommons

Substantial research efforts have tried to build up a detailed picture of the timing and rate of human settlement and changes in vegetation cover on the island, and most importantly whether there is a clear causal link between the two. Much of the evidence for environmental changes on Easter Island come from lake sediment sequences, a subject close to my heart (having invested 3 years and counting looking at lake sediments for my PhD).

An example of a sediment core extracted from a lake bed. Photo from WikiCommons, courtesy of Gary Rogers.

An example of a sediment core extracted from a lake bed. Photo from WikiCommons, courtesy of Gary Rogers.

In particular, identifying pollen grains at different depths in lake sediment cores can be used to reconstruct what types of plants were growing on the island through time and identify the timing of shifts from a tree-dominated landscape to a more open grassland, for example. I recently found a paper in the journal Quaternary Science Reviews (Cañellas-Bolta et al. 2013, QSR; I apologise that it is not open-access) that I was immediately drawn to as it applied a multi-proxy (integrating different, independent techniques) analytical approach to a new sediment core from a lake on Easter Island. Now, I have thoroughly enjoyed my PhD (so far!); it has been exciting, interesting and the fieldwork has been in the picturesque landscapes of the English Lake District and southern Scotland. Nevertheless, reading this paper set me off on a series of day-dreams because, as lakes are pretty much ubiquitous around the world, maybe one day in the future as part of a successful academic career, I could drill a lake somewhere REALLY cool?!?

A number of hypotheses have been set out to try and explain when settlers first arrived on Easter Island and what triggered the demise of their undoubtedly complex civilisation. One common story is that increased demand for firewood and space for agriculture led to rapid deforestation, severe soil degradation and ultimately cultural collapse. Climatic fluctuations, the introduction of rats, contact with European explorers or simply living in such isolation have also been proposed as drivers of this collapse.

Panoramic view across Hanga Roa, Easter Island. The modern-day 'natural' landscape dominated by open grassland and largely devoid of palm trees is clear to see. Photo from WikiCommons courtesy of Makemake.

Panoramic view across Hanga Roa, Easter Island. The modern-day ‘natural’ landscape dominated by open grassland and largely devoid of palm trees is clear to see. Photo from WikiCommons courtesy of Makemake.

The new data from Cañellas-Bolta et al. include identification of a new pollen type Verbena litoralis and a more refined chronology for their sediment core based on radiocarbon dating. Using radiocarbon dates to identify the timing of events on Easter Island has been problematic due to inverted ages (i.e., a radiocarbon age higher in the sediment sequence returns an older date than samples lower down the core) and hiatuses, or gaps, in the sediment record. The hiatuses are particularly problematic here because sediment accumulation rates are very slow (100 years per cm), thus any gap in the record sadly means a significant chunk of the story has been lost. The authors use the BACON age-depth modelling software package to construct a more robust chronology, as the model incorporates known prior information on sediment accumulation rates and the identification of hiatuses within a Monte Carlo Markov Chain framework (Systematically running many millions of slightly-different simulations based on the same radiocarbon ages) in order to incorporate all possible age distributions, thus doing a better job of accounting for chronological uncertainties.

Verbena litoralis. Photo from WikiCommons, courtesy of Forest & Kim Starr.

Verbena litoralis. Photo from WikiCommons, courtesy of Forest & Kim Starr.

Their vegetation reconstruction suggests Easter Island was dominated by palm trees until ~450 B.C., where the first evidence for a shift in vegetation cover is observed. At this time, grassland and the marker weed species V. litoralis increase in abundance while palm pollen numbers decline, likely suggesting a clearance episode. The replacement of palm-dominated vegetation by herbaceous taxa then continues in a stepped manner, with another major palm decline at ~1200 A.D. This is the most-commonly accepted date for the first Polynesian settlers to the island (~A.D. 800 – 1200) so fits in well with previous work. But the suggestion that human-induced changes in vegetation cover began ~450 B.C., approximately 1500 years earlier, has enormous implications for our understanding of the history of not only Easter Island but also the pattern of settlement across much of Polynesia.

The history of Easter Island has been a topic of intense debate and this paper is another entry into the story. One part of their paper I found particularly neat is that V. litoralis is a weed species native to North America; how then did it arrive on Easter Island nearly 2500 years ago? The authors, after careful consideration of natural dispersal mechanisms, strongly support an interpretation of human-driven spread. They mention other interesting examples such as evidence that sweet potato and bottle gourd, crops native to South America, arrived in Polynesia in prehistoric times and a contemporaneous introduction of Polynesian chickens to Chile.

The authors refrain from making sweeping statements about their findings in terms of re-thinking local and regional history, instead emphasising that many hypotheses remain plausible and there is tremendous scope for future work. I am now mentally planning my mud-extraction expedition as I type…

As a final point, I read Collapse several years ago and was quite taken by the author’s arguments but having read the paper and put together this blog post, I am inspired to conduct a more critical examination of all the information pertaining to Easter Island, especially as I am extremely concerned by the current state of natural environments around the globe and our role in their rapid degradation.

Becoming a Ghost Buster: What triggers sapropel formation?

As I touched upon in our first post, we can use the magnetic properties of minerals in sediments (and other environmental materials) to understand changes in environmental and climatic conditions. This is known as environmental magnetism. The basic idea is to identify links between the magnetic properties of a material and environmental conditions and depositional processes. This approach is not as modern as you might think and was first used back in 1926! Understanding and characterising how and in what quantities magnetic minerals form can give key indicators of past climates. A great example of how useful this tool can be for understanding rates of deposition, geochemical conditions and past climate changes was shown in our post last week. Magnetic iron oxides and sulphides can form and be dissolved in deep-sea sediments, depending on the geochemical conditions and this can be used to identify ghost sapropels, (Langereis & Dekkers, 1999). Combining evidence for change in the magnetic signature of sediments and changes in composition can indicate changes in the climatic or tectonic setting in which the material was being deposited.

Magnetostratigraphy as a dating tool

In addition, magnetostratigraphy can be used to date sedimentary (and volcanic) sequences. It is, essentially, a correlation technique, which aided by independent isotopic ages, can be used to date a sedimentary section or core. The Global Magnetic Polarity Time Scale (GMPTS) is used for this . The direction of the field recorded in a stratum can be normal or reversed and this will coincide with a known normal or reversed chron of a given age. In the 1950s the first GMPTS, of sorts, was established using the sea floor magnetic anomaly patterns (the familiar bar code type outline seen spreading away from the North Atlantic Ridge). However, it was later on, when each reversal was accurately dated using the astronomical polarity time scale (APTS ) that magnetostratigraphic became a valuable chronology tool. The rates of sediment accumulation within a sequence or core can also be established by plotting the age of the each reversal versus the stratigraphic level at which the reversal is found, giving deposition rates in meters per million years.

What triggered sapropel formation?

We explained in our last post some of the proxy techniques capable of distinguishing sapropels from the background sediment matrix. A dramatic environmental change must have been necessary to create the depositional conditions suitable for their formation. Investigating the nature of this change has been a key task for palaeoceanographers over several decades!

The critical condition for sapropel formation was deep water anoxia (water depleted in oxygen) within the eastern Mediterranean Sea. So, periodically, dissolved oxygen was unable to reach the deeper sea because the water column was vertically stratified; in other words, surface water had quite low salinity while the deeper waters were highly saline (Rossignol-Strick et al. 1982). An influx of freshwater to the Mediterranean would have decreased the salinity of its surface waters; scientists have therefore posed the questions “from where did this increased flow of freshwater come and what was its trigger?” A number of hypotheses have been put forward over recent decades, all of which invoke a strong link between climate and sapropel formation, although the primary trigger has been more widely debated.

The darker sapropelic layer is clearly visible in this photographic core log. Photograph used with the kind permission of Dr Mike Rogerson, University of Hull.

The darker sapropelic layer is clearly visible in this photographic core log. Photograph used with the kind permission of Dr Mike Rogerson, University of Hull.

The original hypothesis from E. Olausson (1961) proposed massive volumes of meltwater from Eurasian ice-sheets entered the Mediterranean from the north at the beginning of warm interglacials. While this has undoubtedly occurred periodically through the Quaternary, improved dating (using magnetostratigraphy as described above, for example) indicates a mismatch between the timing of sapropel formation and meltwater influx.

More recent research linked the formation of sapropels to enhanced solar insolation. Insolation refers to the amount of solar radiation reaching an area of the Earth’s surface, which varies through the day, annually and on longer timescales (i.e., Milankovitch cycles). Over these longer timescales, it appears phases of insolation maxima during the Northern Hemispheric summer caused stronger monsoons to form over northern Africa, bringing more intense rainfall. As a result, flow in the River Nile (and likely in other rivers draining into the Mediterranean from North Africa that have since dried up) was greatly increased, delivering substantial volumes of freshwater.

The most widely accepted hypothesis today expands on the Nile freshwater hypothesis and suggests warmer sea surface temperatures (due to higher insolation) occurred simultaneously (Emais et al. 2003).  Together, the influx of freshwater and warmer sea surface temperatures were sufficient to create an upper water layer of sufficiently low density to interrupt circulation and create the oxygen-poor conditions at the sea bottom necessary for the formation of sapropels.

 

Olausson, E. (1961) Studies in deep-sea cores. Reports of the Swedish Deep-Sea Expedition, 1947-1948, v.8, Sediment cores from the Mediterranean Sea and Black Sea. [d1]