EGU Blogs

Resource Security

Rocks in the right place at the right time…

Rocks in the right place at the right time…

Flo looks two examples of the strange and important ways that geology and where it’s located can affect international governance and regulation. From the presence of tiny coralline islands to ownership of the Arctic!

I’ve always had an interest in the peculiarities of geology and geomorphology and the inordinate (sometimes almost absurd!) ways that they play their part in deciding on big international governance. Humanity has long-relied on the presence of geological features such as mountain ranges, coasts, rivers etc. to delineate ownership and basis on which to set ‘ground rules’.These geological features account for many historic and modern day national borders and so the odd rock in the right place at the right time can be very handy (or not, depending on which side of the coin you’re on…).  Sometimes this works well, countries such as India and Chile use enormous, previously impassable mountain ranges such as the Himalayas and the Andes as their natural borders and this has worked relatively well. Island states such as the UK assume their land borders at the point where land meets the sea, which also works for now but is ultimately just a function of current sea level. But in a dynamic world, the formation and loss of landmass and particularly changing sea levels will be shifting quite considerably in the face of human-induced climate change, and so the previously established rules and regulations about ownership and governance may start to become and bit less solid than it was…so where does this leave us?

I’m going to look at a couple examples of where geological features have influenced the distribution of governance responsibility among nations, and just how flimsy that burden of proof can get!

The Arctic

2007_Arctic_Sea_Ice - Copy (2)

The image shows a record sea ice minimum in the Arctic, taken in September 2007. Image Credit – NASA, Wikimedia Commons.

One great example of how small, uncontrollable things can influence major decisions and changes, is the right to ownership and governance of the Arctic. The ongoing in reduction of sea ice in the Arctic due to climate change and recent developments in technology that would allow development of Arctic resources has led to something of an arms race with countries laying claim to large tracts of the region. The scientific basis for many of these claims is based on the mapping of ocean ridges and where they sit in relation to the Arctic states (Canada, US, Russia, Denmark, Finland, Iceland, Norway and Sweden).

The process for assigning areas of the Arctic is both scientific and political but nation states must prove through surveying that there is continuity and that they are geologically ‘attached’ to the Arctic by a ridge. The most recently lodged claim is that of Denmark, who, via Greenland a semi-autonomous Danish territory (another potentially fortuitous link in this chain), can lay claim to an area of 895,000 square kilometers due to the extension of the

Bathymetric map of the Arctic Ocean. Image Credit - NOAA, Wikimedia Commons.

Bathymetric map of the Arctic Ocean. Image Credit – NOAA, Wikimedia Commons.

Lomonosov ridge, according to a senior geophysicist with the Geological Survey of Denmark and Greenland. Denmark has filed a claim to the area to the UN linked to the ridge, and if successful will have access to a sizable chunk of the Arctic’s resources. The regulation that covers these kind of claims is the U.N. Convention on the Law of the Sea which states that nations are entitled to a distance of 200 nautical miles from their coast, any claims beyond this reach need to be supported by scientific data. This most recent claim is the fifth from Denmark who have also previously submitted claims north of the Faroe Islands (another Danish territory) and in an area south of the Faroe Islands. This builds on a body of work where Danish scientists surveyed a 2000 kilometer long underwater mountain range that runs north of Siberia, they concluded that this ridge is geologically attached to Greenland. All of the submissions await consideration by the Commission on the Limits of the Continental Shelf , the Danish statement currently overlaps with with Norway’s continental shelf beyond 200

A USSR postcard depicting Soviet dominance of the Arctic! Image Credit - kristofer.b, Wikimedia Commons.

A USSR postcard depicting Soviet dominance of the Arctic! Image Credit – kristofer.b, Wikimedia Commons.

nautical miles and there are also potential overlaps with claims by Canada, Russia and the U.S.

Some people involved in the process had hoped that control of the Arctic would be decided on through a ‘Gentleman’s agreement’ rather than the tough negotiations that will now ensue.

The United Nations panel will eventually decide control of the area, and the sea floor boundaries will be settled by international negotiations but this process won’t begin until the  scientific data has been examined. This is expected to take 10-15 years, by which stage the politics around accessible resources in the Arctic will have intensifed due to increased global warming creating easier access to many of the oil and mineral reserves, so this topic isn’t going away!

Okinotori Islands

This tiny uninhabited set of islands, 1100 miles south of Tokyo in the Phillippine Sea is currently also responsible for lending control of a 160,000-square-mile economic zone in the surrounding waters. The most southerly of Japan’s landmass is only 7 miles around and it is just, and only just, keeping its head above water. Herein lies the problem, according the the UN’s ‘Law of the Sea’ ( useful but problematic bit of regulation), any claim to an exclusive economic zone, (such as Okinotorishima, or ‘distant bird island’) like the one in Japan is

Location of the Okinotorishima islands in the Phillippine Sea. Image Credit - ForestFarmer, Wikimedia Commons.

Location of the Okinotorishima islands in the Phillippine Sea. Image Credit – ForestFarmer, Wikimedia Commons.

dependent on the existence of a habitable island landmass existing in the area. If this island sinks beneath the water then the whole claim to the economic zone sinks with it, along with important mineral and fish resources for Japan. The claim, even if the islands stay above water isn’t uncontested, China disputes the ownership stating that  the islands are just a cluster of uninhabitable rocks and doesn’t fulfill the requirement of ‘habitable’ at all! While it’s true that no one lives there, the small area is host to a small man-made islet with a platform which is used as a weather monitoring station with a building that houses researchers.

The usefulness (and contention) of these islands and their slow sinking has not bypassed the Japanese government who have set up programs (and considerable investment) to keep the islands bobbing above sea level. The project to keep the island above water is two-fold, the Japanese government have installed protection around the island in the form of  cement, steel blocks and titanium mesh to protect from erosion and the increasing number of tropical storms.

800px-Okinotorishima2

Map of Okino-Torishima, Pacific Ocean. Image credit – Ratzer, Wikimedia Commons.

However the ‘sinking’ is not just due to erosion and damage but also due to the low production of coral.  This is thought to be due to the warmer waters in the area lowering coral growth.  This loss of landmass and the important politics associated with it has meant that several agencies have made it a priority to revitalise the growth of  corals, although it’s not quite that simple! This involves applying a method of sexual reproduction developed over the past 20 years to cultivate corals. According to the fisheries agency, about $19 million ( of tax payers money…) has been spent to breed about 100,000 coral plants using the method with a success rate of approximately 20%. It remains to be seen whether this rock, doctored or otherwise, will be in the right place for the Japanese authorities in years to come…..

It’s worth reflecting that with both these examples, not only are they wholly reliant on the location of bits of geology to define long-lasting rules, regulations and potentially economic opportinities that can make or break countries but also these rocks (in a geological sense) are totally transient, and the ridges that secure the Arctic and the corals that secure the economic zone for Japan just happened to be in the right place at the right time. Throw in an exntending ridge of a destructive plate margin somewhere else and this fragile hierarchy would be thrown into disarray.

Further Reading

BBC News – Denmark challenges Russia and Canada over North Pole.

Phys.Org – Denmark claims North Pole link via Greenland ridge link

NPR.org – Denmark Claims Part Of The Arctic, Including The North Pole

Global News – Denmark claims North Pole through Arctic underwater ridge link from Greenland

New York Times –Growing Coral to Keep a Sea Claim Above Water

You Tube – China refutes Japanese claim about Okinotori Reef as island

Asia-Pacific Journal – Japan Focus – The US-Japan-China Mistrust Spiral and Okinotorishima

 

 

The Water-Energy Nexus

The Water-Energy Nexus

Flo Bullough writes on the concept of the water-energy nexus; its implications for energy and water security and the impact of climate change and future planning and regulation. 

I first came across the concept of the water-energy nexus when the former UK Chief Scientific Advisor John Beddington discussed the interdependence of food, water and energy as part of his tenure at government: something he described as a ‘perfect storm’. Since then, much has been written about this topic and below is an overview of the issues as they relate to the geosciences.

Tarbela Dam on the Indus river in pakistan. The dam was completed in 1974 and was designed to store water from the Indus River for irrigation, flood control, and the generation of hydroelectric power. The use of water for power captures the interdependence of energy and water. Source - Wikimedia Commons

Tarbela Dam on the Indus river in pakistan. The dam was completed in 1974 and was designed to store water from the Indus River for irrigation, flood control, and the generation of hydroelectric power. The use of water for power captures the interdependence of energy and water. Source – Wikimedia Commons

Water stress and scarcity is one of the most urgent cross-cutting challenges facing the world today and is intrinsically linked with the need for energy.  Water is required for extraction, transport and processing of fuel as well as to process fuels, for cooling in power plants and for irrigation in the case of biofuels. While energy is required for pumping, transportation and the purification of water, for desalination, and for wastewater.  The interconnectedness is such that water and energy cannot be addressed as separate entities. This interdependence is termed the ‘water-energy nexus’, an approach which allows a more holistic assessment of energy and water security issues. Water scarcity is intensifying due to excessive withdrawal , whilst concern for energy provision is sparked by diminishing fossil fuel reserves and the built-in problem of CO2 emissions and climate change.

Over the last 50 years, the amount of water withdrawals has tripled while the amount of reliable supply has remained constant. This has resulted in depletion of long term water reservoirs and aquifers, most acutely in emerging economies with high population growth such as China, India and areas in the Middle East. Additionally, pressures such as the growing cost of fuel extraction, climate change and the of the energy mix has put pressure on the security of energy supply.

Map of the global distribution of economic and physical water scarcity as of 2006. Source - Wikimedia Commons

Map of the global distribution of economic and physical water scarcity as of 2006. Source – Wikimedia Commons

Energy limited by water

The energy sector relies heavily on the use and availability of water for many of its core processes. Resource exploitation, the transport of fuels, energy transformation and power plants account for around 35% of water use globally. Thermoelectric power plants are particularly thirsty and use significant amounts of water accounting for the majority of water use by the energy sector. In the USA in 2007, thermoelectric power generation, primarily comprising coal, natural gas and nuclear energy, generated 91% of the total electricity and the associated cooling systems account for 40% of USA freshwater withdrawals (King et al., 2008).

Of the different types of power plants, gas fired plants consume the least water per unit of energy produced, whereas coal powered plants consume roughly twice as much water, and nuclear plants two to three times as much. By contrast, wind and solar photovoltaic energy consume minimal water and are the most water-efficient forms of electricity production.

Comparative water consumption values by energy type. Data source - WssTP

Comparative water consumption values by energy type. Data source – WssTP

There has been much discussion over the variable CO2 contributions of different fuels but these can be misleading, as the consideration of water consumption (as opposed to withdrawal, see Link) is often omitted. For example, unconventional fracked gas is often presented as a preferable source of energy over coal due to its reduced associated CO2 emissions, but the extraction of fracked gas consumes seven times more water than natural gas, oil extraction from oil sands requires up to 20 times more than conventional drilling and bio fuels can consume thousands times more water due to the need for irrigation. Additionally, carbon capture and storage (CCS) technology has the capacity to remove CO2 from the system but is also estimated to need 30-100% more water when added to a coal fired power plant. Looking at carbon intensity alone may result in a scenario where electricity production is constrained by water scarcity, while global demand for electricity increases.

Water limited by Energy

The flipside to the need for water for energy production is the need for energy in order to produce and deliver water for drinking and other domestic, agricultural and industrial use. Domestic water heating accounts for 3.6% of total USA

Water treatment works. Source - Wikimedia Commons

Water treatment works. Source – Wikimedia Commons

energy consumption (King et al., 2008) while supply and conveyance of water is also energy-intensive and is estimated to use over 3% of USA total electricity. Energy is required at every step of the supply chain, from pumping ground water (530 kW h M-1 for 120 m depth), to surface water treatment (the average plant uses 370 kWh M-1) and transport and home heating (King et al., 2008). Water treatment will require even more energy with the addition of treatment technologies and purification measures.  Water companies in the UK report increases of over 60% in electricity usage since 1990 due to advanced water treatment and increased connection rates, and conservative estimates predict increases of a further 60-100% over 15 years in order to meet the myriad relevant EU directives. This increased energy use may result in displacement of the pollution problem from that in water bodies to build up of CO2 in the atmosphere.

Desalination

One of the most problematic developments in the competition for water and energy is the growth of desalination. It is used in areas suffering from water scarcity, but have viable energy sources to power the energy-intensive purification process. In areas such as the Middle East, the Mediterranean and Western USA, governments have increased their investment in desalination technology in order to secure a more stable water supply. However, the high-energy requirements, steep operational costs, wastewater disposal issues and large CO2 emissions often make this an unsustainable solution.

Desalination is often made economical through access to cheap, local energy sources and an abundant water source. This

Desalination can be very energy intensive. A view across a reverse osmosis desalination plant. Source - Wikimedia Commons

Desalination can be very energy intensive. A view across a reverse osmosis desalination plant. Source – Wikimedia Commons

usually precludes the adoption of desalination in many land-locked countries, as operational costs increase with distance from the water source. However, increased water stress is leading to calls for more ambitious projects such as the planned Red Sea-Dead Sea project (see an earlier Four Degrees post on this) to build a desalination plant and a 180 km pipeline through Israel, Palestine and Jordan.

Desalination can use 10-12 times as much energy as standard drinking water treatment, and is expensive, unsustainable and can lead to increased CO2 emissions (King et al., 2008). These undesirable effects have led to widespread opposition to desalination in areas such as California and Chennai, India. Utilising renewable energy resources, coupled with the use of saline or wastewater for cooling at the power plants, could make the process more sustainable.Water and energy are set to become increasingly interdependent, and by 2050 water consumption to generate electricity is forecast to more than double.

The Impact of Water Scarcity

Freshwater scarcity is a growing issue and by 2030, demand is set to outstrip

India is a very green and wet country courtesy of its regular monsoons but poor management and overexploitation has left is with problems with water scarcity. Source - Wikimedia Commons

India is a very green and wet country courtesy of its regular monsoons but overexploitation of its water resources has left it with problems with water scarcity. Source – Wikimedia Commons

supply by 40%. This is due in part to economic and population growth, but also the rise of aspirational lifestyles, which creates demand for more water-intensive products. This increase in demand will put additional pressure onto water-stressed regions, as well as intensifying current trans-boundary water conflicts. The issue of water shortages often intersects geographically with fragile or weak governments and institutions that may lack the capacity to put in place measures to address water security. In 2004, 29% of India’s groundwater reserves resided in areas that were rated semi-critical to overexploited. About 60% of India’s existing and planned power plants are located in water-stressed areas and there are plans to build a further 59 GW of capacity, around 80% of which will be in areas of water stress and scarcity.

Click on the image to watch an animation showing the average yearly change in mass, in cm of water, during 2003-2010, over the Indian subcontinent. Source - Wikimedia Commons

Click on the image to watch an animation showing the average yearly change in mass, in cm of water, during 2003-2010, over the Indian subcontinent. Source – Wikimedia Commons

Climate change impacts

Climate change presents a challenge to business-as-usual assumptions about future energy and water provision. Predicted major heat waves and droughts will add pressure to both water and energy security. Climate change is set to affect areas around the world in unprecedented ways; in southern Europe, temperatures are likely to rise, and drought will become more common in a region already vulnerable to water stress. Particularly in Spain, a country that derived 14.3% of its electricity production from hydropower in 2010, where hydroelectric plants have been under considerable stress in the last 20 years due to long running issues with drought (Perez et al., 2009;  Trading Economics, 2013). Power cuts caused by extreme weather events, which are expected to become more frequent, will affect areas that rely heavily on energy-intensive ground water extraction for drinking water.

The 2013 EIA Energy Outlook up to 2040 shows steady increases in the need for all fuel types for energy use. Source - Wikimedia Commons

The 2013 EIA Energy Outlook up to 2040 shows steady increases in the need for all fuel types for energy use. Source – Wikimedia Commons

What can be done?

The conflict between more water-intensive energy production and the water needs of a growing population, seeking a better quality of life, will exacerbate an already stressed water-energy nexus.Additionally, Climate change is now considered an issue of national security in many countries, threatening both people and the environment within and across state boundaries. For this reason, climate change mitigation and adaptation must be managed at a new strategic level, beyond that of national law making. A more holistic approach to management of environmental change, water and energy security will also be required.  It will also require strategic planning of water and energy security over much longer timescales than previously.New water and energy production plants must be sited with consideration for water withdrawal, consumption and local power accessibility in addition to future unpredictability in climate as the lifetime of such developments is several decades or more.

Regulatory Changes

Another important tool to address these issues is regulation. Current regulatory frameworks such as the European Climate and Energy Package and the Water Framework Directive (WFD) need to be developed in light of the water-energy nexus model. The EU is committed to 20-30% reduction in CO2 emissions by 2020 compared to levels in 1990, with reductions of up to 50% by 2030 and 80% by 2050 under negotiation. In contrast, the WFD requires additional treatment measures and this will need additional energy, exacerbating tensions between water and energy demand.

There are many policy instruments that can be used to regulate the role of water and energy management, such as water pricing and charges on carbon emissions to incentivise sustainable behaviour. A recent example of this includes the new  US Environment Protection Agency announcement that they will be limiting greenhouse gas emissions for all new electricity generating power plants for coal and gas.  The development of CCS technology could reduce the carbon footprint of power plants, but water consumption implications should be taken into consideration. Adoption of disincentives for certain types of land-use change and stricter building and engineering regulations could also be introduced to increase resilience against extreme weather.

The growing geopolitical issues of water location and scarcity will need to be managed through adaptable water sharing agreements, since many of the world’s largest and most important river basins, such as the Mekong River, which passes

Map of the Mekong River - The long and complicated route of the Mekong river and its intersection with many borders shows the complexity of water management. Source - Wikimedia Commons

Map of the Mekong River – The long and complicated route of the Mekong river and its intersection with many borders shows the complexity of water management. Source – Wikimedia Commons

through south-east Asia, cut across many borders. Co-management strategies such as shared water level and quality information will become important so as the water systems can be managed effectively. Governments must also improve their resilience to extreme weather conditions individually and collectively.

A greater focus on recycling energy- and water-intensive commodities would also alleviate water stresses when taken together with other measures. Education about recycling and water and energy conservation programmes could produce benefits, but also require investment and careful management.

This broad set of issues can only be effectively ameliorated through a holistic approach. A broad analytic framework is needed to evaluate the water-energy relationship, and this must be balanced with local policy contexts and different regulatory measures to ensure water and energy are sustainably managed in the 21st century.

A version of this post first appeared in the European Federation of Geologists magazine ‘European Geologist‘. 

References and Further Reading

Gassert, F., Landis, M., Luck, M., Reig, P., Shiao, T. 2013. Aqueduct Global Maps 2.0. Aqueduct, World Resources Institute. (accessed here in March 2013: http://aqueduct.wri.org/publications)

Glassman, D., Wucker, M., Isaacman, T., Champilou, C. 2011. The Water-Energy Nexus: Adding Water to the Energy Agenda. A World Policy Paper. (accessed here in March 2013: http://www.worldpolicy.org/policy-paper/2011/03/18/water-energy-nexus)

IEA World Energy Outlook 2011. (accessed here in March 2013: http://www.iea.org/newsroomandevents/speeches/AmbJonesDeloitteConference21MayNN.pdf)

King, C, W., Holman, A, S.,  Webber, M, E. 2008. Thirst for energy. Nature Geoscience, 1, 283-286.

Lee, B., Preston, F., Kooroshy, J., Bailey, R., Lahn, G. 2012. Resources Futures. Chatham House. (accessed here in March 2013: http://www.chathamhouse.org/publications/papers/view/187947)

Perez Perez, L., Barreiro-Hurle, J. 2009. Assessing the socio-economic impacts of drought in the Ebro River Basin. Spanish Journal of Agricultural Research, 7, No 2, 269-280.

Trading Economics. Electricity Production from Hydroelectric Sources (%of total) in Spain. (accessed here in March 2013: http://www.tradingeconomics.com/spain/electricity-production-from-hydroelectric-sources-percent-of-total-wb-data.html)

WssTP The European Water Platform. 2011. Water and Energy: Strategic vision and research needs. (accessed here in March 2013: http://www.wsstp.eu/content/default.asp?PageId=750&LanguageId=0)

Raising the Dead Sea

Raising the Dead Sea

 

The Dead Sea is one of the planet’s truly otherworldly places: a peculiarity of water distribution, climate and altitude, it is even more extroadinary in that it is a site of religious, cultural and political significance. Viewed by many as a natural wonder, its characteristics and location within one of the most entrenched political situations in modern history makes it intriguing and troubled in equal measure.

The Dead Sea is the deepest hypersaline lake in the world, situated at the lowest point on earth. It has a salinity of 33.7% due to high concentrations of NaCl and other mineral salts.  The Dead Sea, aside from being a misnomer (it is actually an inland lake) is so-called because of the harsh living conditions that the salinity engenders. Many organisms such as fish cannot live there, in fact only populations of bacteria and microbial fungi can thrive.

800px-Yarden_034PAN2

The Jordan River. Source

Located in the Jordan rift valley bordering Jordan to the east, and Israel and Palestine to the west, it is served only by the Jordan River to the North. A combination of the mineral content of the water, low content of pollens, the reduced ultraviolet component of solar radiation and the higher atmospheric pressure at this depth have specific health effects which have borne a booming spa-tourism economy. This along with the dramatic scenery and tranquil waters is why it has long been a site of tourism and refuge; King David used it as such and it was one of the world’s first health resorts for Herod the Great.

There are two schools of thought as to how it formed; one is that the depression forms part of the East African rift valley complex and, another more recent hypothesis describes the formation as a ‘step over’ discontinuity along the Dead Sea Transform creating an extension of the crust. The sea was once connected to the Mediterranean and experienced regular flooding, resulting in thick layers of salt deposition. The land between the Mediterranean and the Dead Sea subsequently rose to cut the basin off and create a lake.

What’s the status now? 

The dwindling water level of the Dead Sea. Source

The dwindling water level of the Dead Sea. Source

The Dead Sea in more recent years has been characterised by a decline in water levels, a drop of ~30m since 1960 alone and is currently shrinking by around 1m/year. This is in part due to a drop in rainfall and the use of water upstream of the Jordan river for irrigation projects. Declining water levels have resulted in a wide variety of environmental issues for the Dead Sea ecosystems and surrounding region. One such issue is the ever-feared rumble that precedes the formation of sinkholes; these can be unpredictable and can occur suddenly almost anywhere in the Dead Sea region. Indeed, the level of uncertainty and rapidity of sinkhole formation is such that around 10 years ago, renowned geographer-geologist and expert on sinkhole phenomena Eli Raz was swallowed up by one and waited 14 hours for rescue!

Sinkholes in the Dead Sea area are caused by the interaction of incoming freshwater with subterranean salt layers.  As the sea level drops, high levels of salt are left behind in the soil and when freshwater washes in from the Jordan River it dissolves the salts and cavities are created. This process continues until the subterranean structure loses integrity and sinkholes are formed.  It is estimated there are now about 3000 in the region of the dead sea with an opening up of around 1 a day.

 

800px-Dead_Sea_sinkhole_by_David_Shankbone

Sinkholes along the shore of the Dead Sea. Source.

Why is the water level dropping?

Jordan, Syria, Palestine and Lebanon have all tapped the Jordan river for water over the last few decades for irrigation purposes resulting in a reduced flow into the Dead Sea.  An area with historically low rainfall, ~ 2 inches a year, enormous amounts of water is also piped off to fill evaporation pools for the potash and magnesium industries which sit at the very southern end of the sea. This alone is thought to result in a 30-40% reduction in water.

In the last 50 years, the population in the surrounding countries of Israel, Palestine and Jordan has increased from 5.3 million to over 20 million with an increase in the settled population in the Dead Sea region. Currently, tens of thousands of tourists visit every year to bathe in the sea and use the many resorts and spas found along the shores and visit the mighty ruin of Masada (including me!) that overlooks the Dead Sea. Tourism is growing in this area and makes up about 40 percent of the income of local residents and this is putting further pressure on diminishing water resources.

The_Dead_Sea_1972-2011_-_NASA_Earth_Observatory

Views of the Dead Sea in 1972, 1989, and 2011 compared. Source.

 

How can environmental catastrophe be avoided?

The delicate balance of inflows, outflows, evaporation and rainfall has been severely disturbed in the last 50 years, and this hasn’t gone unnoticed. A highly ambitious project is underway to replenish the Dead Sea and ameliorate some of the water and energy shortage issues in the region. The World Bank, together with the local governments is planning to create a canal linking the Red Sea to the Dead sea.  The project includes a series of studies including feasibility, environmental and social assessment with the aim of generating a trilateral agreement between Palestine, Jordan and Israel. If the plan goes ahead as detailed, the pipeline will deliver 2 billion cubic metres of sea water per year from the Gulf of Aqaba through Jordanian territory and to the Dead Sea. The plan is to also use the downwards flow between the Red Sea and the Dead sea to incorporate a hydroelectric plant. This is in turn will power a desalination plant which would provide up to 850 million m3 of fresh water per year to a water parched region. The briny discharge from the desalination plant would then be discharged into an already-saline Dead Sea. The project is likely to cost at least US $10 billion, a significant proportion of this is taken up by the cost to pump the desalinated water 200km over an altitude change of 1000m from the Dead sea towards Amman, an extremely parched area.

782px-ArabianSea_AMO_2005053_crop

Algal Blooms in the Arabian Sea. Source.

So, it sounds good but is it really that simple? Many studies find that if more than 400 million m3 of sea water is added to the Dead Sea, this could result in the formation of algal bloom and unsightly gypsum crystals, the effects of which have effects that are difficult to predict, this will impact on the image and chemistry of the Dead Sea. Although the ecological effects of these chemical changes are still unclear, they would likely diminish the sea’s tourist appeal. This is in addition to the fact that the amount of water supplied would not be enough to stabilise or increase the level of the Dead Sea. There is also concern about the effects of mixing Red Sea water with Dead Sea water. Many other alternatives have been mooted by environmental groups, such as water recycling and conservation by Israel and Jordan, importing water from Turkey and desalinating sea water on the Mediterranean coast. Whilst pumping desalinated sea water from the Mediterranean to Ammam would be easier and cheaper, the geopolitics are concerning. Many worry that Israel would control the supply to Ammam.  Another very real concern is the high frequency of earthquakes in the region, seismic activity could cause salt water to leak into underground fresh water aquifers. Others would prefer to see the rehabilitation of the Jordan River with a greater utilisation of desalination to provide water to the Mediterranean coast.  All of these alternatives however require cooperation and a regional approach to water sharing which is difficult in this part of the world to say the least.

Regional Water Security

This issue sits within a wider problem. This is a region with extremely low levels of rainfall and a booming population. Jordan are well behind the Red-Sea-Dead-Sea project largely because the country’s access to fresh water is extremely restricted, which has been exacerbated by the arrival of more than a quarter of a million Syrian refugees since the outbreak of the civil war.

800px-Nitzana_desalination_(2)

Nitzana desalination plant in Israel. Source.

Israel has long had issues with water scarcity. Due to low rainfall and a booming industry, the demand on water outstrips conventional water resources. This is put under further strain from the water-intensive agricultural practices used throughout the country.This is in part alleviated by their technologically advanced desalination plants dotted along the Mediterranean coast.

Gaza, on the Mediterranean coast is thought to be heading for a serious water crisis in the coming decade with 90-95% of the main aquifer contaminated, the UN suggest the water might be unusable by 2016. Meanwhile water shortages in the West Bank affect the provision of drinking water, water used for farming and agriculture in addition to that required for basic sanitation.

Regional Geopolitics

The regional geopolitics is intensely complex with many historic and current political factors at play. Others can write much more authoritatively on the area but it is worth mentioning here because, as with many geological issues, the interplay between the two is important.

The main regional players are Israel, Palestine and Jordan. Jordan, with few freshwater resources and no oil to power desalination plants, has long been considering an engineered solution to alleviate the water issue in Jordan. At peace with Israel since the signing of a treaty in 1994, the Jordanian government is hoping the plan goes ahead in full.

Israel and Palestine are significantly more complicated. The current de facto borders of Israel and Palestine are broadly along the lines drawn following the ‘Six Day War’ in 1967, as seen in the image, where Israel extended its borders and captured, among other territories, the West Bank.

West_Bank_&_Gaza_Map_2007_(Settlements)

Map of the West Bank and Gaza Strip. Source.

Contemporary Palestine now exists as two non-coterminous territories: the Gaza strip, which is on the Mediterranean coast (run by Hamas) and whose borders are controlled by Israel and Egypt, and the West Bank (the name of which refers to the Jordan River) which borders Israel to the north, south and west, and Jordan to the east. Civil and military authority in the West Bank is a mixture of the Fatah-led Palestinian Authority and the Israeli state. The Dead Sea spans the south east corner of the West Bank, as well as parts of Israel and Jordan. Whilst the West Bank shares a geographical border with Jordan, this is controlled by Israel, and the West Bank remains under Israeli occupation under international law.

In a region with scarce water resources, distribution can be controversial – and Israel’s monopoly over a shared aquifer and access to the Jordan River has resulted in the state being accused of restricting access to water for Palestinians.

Palestine (despite divisions in governance across the two territories) is still seeking independent statehood, and in 2012 was recognised at the United Nations as a ‘Non-member observer state’. As such, negotiations over multilateral initiatives such as the Red Sea-Dead Sea project have enormous geopolitical implications. 

Other Cross-boundary Water Conflicts

There are many examples of delicate border regions which cut across natural river systems, such is the nature of modern national borders, they very rarely follow catchment areas and as such control over and use of water bodies can be highly contested.

Cross boundary water engineering negotiation goes on in many areas around the world and these often intersect with political and environmental issues. In addition to the Dead sea and Jordan river the Nile is subject to boundary issues, running through Egypt, Sudan and Ethiopia. Egypt and Ethiopia are currently negotiating over a billion dollar dam project being built in Ethiopia. Egypt are looking to help with the construction of the dam project.

The Caspian Sea has also had more than its fare share of water-rights disputes. A massive sea in Central Asia, its issues descend from the break up of the Soviet Union in 1991 and thus increasing the number of countries with an interest. As such a number of plans have been proposed and rejected due to lack of unanimity leaving the legality and governance of the area up in the air and resulting in resource grabs and export of resources struck without agency.

As with the Dead Sea, these examples show the great complexity in dealing with cross-boundary water management and no situation is the same, and must be dealt with carefully and on a case by case basis.

Flo

Further Reading

BBC News – Project to replenish Dead Sea water levels confirmed

Phys Org – Dead Sea, Red Sea plan raises environmental hackles

Nature – Environmental concerns reach fever pitch over plan to link Red Sea to Dead Sea

Slate – The Dead Sea is Dying

 

 

 

What’s all the Phos about?

What’s all the Phos about?

Phosphate use for fertilisers, essential in modern agriculture, is hitting an all time high while resources are being heavily depleted. Flo discusses the background, numbers, geopolitics and potential solutions behind the issue of ‘the end of phosphorus’.

The Issue

800px-Agriculture_in_Brazil

Modern agriculture has developed in-line with the availability of high quality phosphate-rock fertilisers. Source – João Felipe C.S, Wikimedia Commons.

The dilemma over diminishing natural resources is a topic of our times with the daily bulletins filled with reports related to resource shortages. These mainly focus around water, energy and food which are imperative for human survival. Whilst energy and water are often debated in the media and political chamber, an area that gets much less attention is agriculture, and in particular diminishing phosphate resources used for industrial fertiliser. Modern agriculture, particularly in developed countries has used mined phosphate for fertilisers for decades but this finite resource is being depleted at an alarming rate.

A combination of growing population, aspirational lifestyles and the demand for phosphate-intensive meat and crops has caused the rapid reduction of phosphate rock resources. In the past, prior to the advent of phosphate mining, additional phosphate for farming and agriculture was sourced from manures

Prior to use of phosphate rock, it was replenished through the use of manure.

Prior to use of phosphate rock, it was replenished through the use of manure. Source – Malene Thysson, Wikimedia Commons.

and organic waste, but as agriculture intensified, the hunt for easier, more accessible phosphate began. From the mid-20th century onwards, the use of rock phosphate was used as a high quality, easily accessible sources of phosphorus which gave rise to the modern fertiliser industry as we see it today. Farmers in rich countries such as Europe and North America became hooked on the cheap and easy phosphorus which readjusted agriculture practices and set phosphate demand through the roof.

Background

Phosphorus (P) is a non-metallic element which is almost always present in a maximally oxidised state (PO43-) as inorganic phosphate rocks due to its reactivity. Elemental phosphorus can exist as red and white (known for its use in weapons and artillery) phosphorus but almost never found as a free element in nature.

It is one of the building blocks of life and life simply wouldn’t exist without it.  It is a key component of DNA, RNA, ATP and phospholipids and is essential to cell development, reproduction and in animals, bone development. The use of phosphorus compounds in fertilisers is due to the need to replace the phosphorus that plants remove from the soil.There is no substitute for this element. Supplies are limited and much is currently wasted, creating concerns about future supplies in the EU and worldwide.

Peak Phosphorus?

220px-WorldPhosphateProduction

A graph of world phosphate rock production vs. year from 1900-2009 obtained from the U.S. Geological Survey. Source – Thomas D. Kelly and Grecia R. Matos, Wikimedia Commons.

Recently there has been a proliferation of articles and discussion over the potential for ‘peak phosphorus’ in the next 20-30 years. World production recently peaked at <160 million metric tonnes (mmt) in 2008. Whilst the majority of people agree that phosphorus is a resource that is of concern, not everyone agrees with the peak phosphorus hypothesis or its potential timing.  Proponents of the argument include this group of academics who published a paper entitled ‘The story of phosphorus: Global food security and food for thought’ and Jeremy Grantham, co-founder of the investment firm Grantham, Mayo, Van Otterloo, who recently wrote a piece in Nature. On mined-phosphate fertilisers, Jeremy Grantham stated that ‘There seems to be only one conclusion: their use must be drastically reduced in the next 20–40 years or we will begin to starve’. Much of the peak phosphorus argument comes from a widely produced diagram from a 2009  paper in Global Environmental Change depicting peak phosphorus to be around 2030 followed by production declining at an accelerating rate.  Detractors to this theory say that the markets are likely to adjust to this problem and cause the price to rise thus forcing a reduction in use and a push for technology to advance to find new sources or recycle current phosphate use. The International Fertiliser Development Center (IFDC), through extensive data gathering state that there is “no indication that a “peak phosphorus” event will occur” in the next 20-25 years.

Resources and Geopolitics

Phosphate_Mine_Panorama

Phosphate mine near Flaming Gorge, Utah. The large size of phosphate mines is dictated by the dispersed nature of phosphate in the rock. Source – Jason Parker-Burlingham, Wikimedia Commons.

Phosphate rock is typically mined at high volume due to its dispersed nature in the rock. Phosphate, in the mineral form of apatite in phosphate rock, is not bioavailable to plants and must be processed to convert it to a plant-available form. The concentrate is used to produce phosphoric acid which is then used in fertiliser products.  Phosphate rock can come in either a sedimentary or igneous form, with sedimentary making up >80% of total global production.

668px-Western_Sahara_Topography

Topographic map of Western Sahara. Western Sahara is disputed territory but is currently controlled by Morocco and therefore the Moroccan Royal Family. Source – Sadalmelik, Wikimedia Commons

In addition to the concern over the amount of resources and rate of use, also of concern is the location of much of the world’s supplies. Europe in particular has scant phosphate resources with a small amount in Finland.   According to the IFDC report from 2010, 72.1% of the world’s phosphate rock production was accounted for by China ( 31.5%), U.S.A (18.7%), Morocco and Western Sahara (15.5%) and Russia (6.4%). However a significant proportion of the world’s high-grade supplies are located in the disputed territory of Western Sahara in North-West Africa, currently controlled by Morocco. This has been termed by Jeremy Grantham  as ‘the most important quasi-monopoloy in economic history’.

Country Mine Production 2007
Mine Production 2008
Reserves Reserve Base (estimated)
China 45,700 50,000 4,100,000 10,000,000
Morocco and Western Sahara 27,000 28,000 5,700,000 21,000,000
Russia 11,000 11,000 200,000 1,000,000
United States 29,700 30,900 1,200,000 3,400,000
World Total (rounded) 156,000 167,000 15,000,000 47,000,000

Table adapted from USGS Mineral Commodity Summaries January 2009. Data is presented in thousand metric tonnes.

Phosphate rock resources in Western Sahara are extremely large and still incompletely explored and therefore it is not understood if the rock is producible at current prices and costs as there is little to no data. The IFDC estimates global resources of 290,000 mmt but if Morocco and Western Sahara resources are included (340,000 mmt) it may increase to 470,000 mmt, as seen in the above table.

Environmental Impacts

800px-EutrophicationEutrophisationEutrophierung

Eutrophication in a pond in Lille, France. Eutrophication is caused by the enrichment of an ecosystem with chemical nutrients such as phosphorus. Source – F. lamiot, Wikimedia Commons.

The use and mining of phosphorus also carries risks. In agricultural use not all of the phosphorus is absorbed by crops which results in leaching into the water. This causes the much discussed eutrophication effect causing algal blooms. Phosphorus mining is also difficult environmentally as it generates a large amount of the waste product phosphogypsum which contains both toxic heavy metals and low levels of radiation. This is very difficult to dispose of and often results in mounds of unprocessed waste material.

As lower-cost phosphate resources will be mined out, mining companies will utilise lower grade ores which will incur the use of more energy and water and will cause the price to go up. Availability of water is of high importance to mining operations and indeed this can dictate the feasibility of phosphate extraction, areas of low water availability may completely restrict development of the mine. Another way in which water, energy and food are interconnected.

What next?

800px-Discharge_pipe

Wastewater discharge pipe – New studies show useable phosphorus can be recovered from wastewater. Source – Department of Agriculture, Wikimedia Commons.

Regardless of the proximity of ‘the end of phosphorus’ it is very much a finite resource and thus development towards more effective use and recycling needs to take place.  Recently, the Environment section of the EC launched a consultation into how to use phosphorus in a more sustainable way, following on from a conference held in March on Sustainable Phosphorus. They have also posted a series of informative videos that can be found here. Much work has been done on the ways in which we can curb our phosphate use or recycle it more effectively. More must be done to monitor and reduce phosphate use as well as recycle wasted phosphate. A few of the potential solutions are listed below.

Phosphate reduction

  • Changes in people’s daily diet away from phosphorus-intensive foodstuffs such as meat. 
  • Since much of phosphorus is lost from the food cycle through waste, a reduction of food waste and its reuse in composts etc could reduce demand.
  • Current agricultural practices result in a very high use of fertilisers. A switch to techniques and practices that conserve more soil nutrients would go some way to reduce phosphorus waste. This includes organic agriculture and use of permaculture (sustainable and self-sufficient agricultural practices).
  • Genetic engineering could produce plants that can flourish with much lower phosphorus use.

Recycling

  • We can recover useable phosphorus from waste streams including urban sewage, since current systems already remove phosphorus from sewage to preserve water quality. Wastewater carries a lot of struvite, a mixture of ammonium, magnesium and phosphate which builds up in the pipework.
  •  A team of canadian researchers believe struvite can be turned into environmental friendly fertiliser, as discussed in this national geographic article. Together with the local government they have set up a lab next to a waste water treatment plant. This process works by altering the pH and allows the wastewater chemical to bond together into pellets through a turbulence process. Currently a working prototype can turn out several tons of pellets a month. Since 2010, the technology has been incorporated into 5 waste water facilities in North America. Whilst there are some cost issues to address, there is relatively little further work required to reproduce this technology on a wide scale. Higher phosphate prices would push wastewater recovery to be economic.