GeoLog

science communication

GeoPolicy: Bridging the gap between science and decision makers – a new tool for nuclear emergencies affecting food and agriculture

GeoPolicy: Bridging the gap between science and decision makers – a new tool for nuclear emergencies affecting food and agriculture

Amelia Lee Zhi Yi, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

The International Atomic Energy Agency (IAEA) has developed an online system to assist in improving the response capabilities of authorities in the event of an emergency caused by natural hazards. The Decision Support System for Nuclear Emergencies Affecting Food and Agriculture (DSS4NAFA), provides a clear overview of radioactive contamination of crops and agricultural lands through improved data management and visualisation, it also assists in decision support processes by suggesting management actions to decision makers. In this interview, we have the pleasure to introduce Ms Amelia Lee Zhi Yi, working at the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture to speak about DSS4NAFA.

Nuclear Emergency Response (NER) for food and agriculture – why is that important and what does it entail?

In the event of a nuclear or radiological emergency, the response should be swift in the interest of human health. After ensuring the well-being of the population, it is necessary to prioritise the assessment of possible radioactive contamination of crops and agricultural lands to avoid ingestion of radioactivity.

Proper data management, data visualisation and risk communication are essential for efficient response to a nuclear emergency. Factors that should be considered for such response include support for sampling and laboratory analysis, optimal allocation of manpower and analytical instruments, and integrated communication between stakeholders.

To make well-informed decisions on for instance planting and food restrictions, food safety authorities need to have a good understanding of the radiological conditions after a fallout event. This is accomplished through the collection of environmental samples such as soil and plants, and food products that are then analysed using consistent methods in qualified laboratories. Further, these data should be displayed in an intuitive manner so that authorities will be able to interpret the data under stressful, time-bound conditions. Finally, to reduce confusion and clearly communicate decisions made to the public, standardised communication protocols of the decisions made by policymakers need to be implemented.

How can technology assist us in this process? What is DSS4NAFA?

Innovative information technology (IT)-based methods can assist in optimising processes in NER. Some examples include streamlining data transfer using cloud-based platforms paired with mobile technologies, facilitating decision making using advanced visualisation tools, and communicating risk to the public using pre-defined correspondence templates.

The Decision Support System for Nuclear Emergencies Affecting Food and Agriculture (DSS4NAFA), is a cloud-based IT-DSS tool developed by the Soil and Water Management & Crop Nutrition Laboratory, under the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. While it was originally developed as a system for nuclear emergency response management and communication, its ability to discern data quality, to provide user-friendly spatio-temporal visualisations for decision makers, and ease in creation of communication materials makes it a good candidate tool for usage in natural hazard risk mitigation.

The beta version of DSS4NAFA is planned to be released in August 2018 for testing by volunteer member states.

General overview of how DSS4NAFA works. After a nuclear or radiological fallout event affecting food and agriculture, the system assists decision makers by allocating samplers and laboratories according to proximity, allows for data to be input into a mobile device and sent to a cloud server immediately, and visualises data for intuitive decision making (Source FAO-IAEA).

How does DSS4NAFA support public authorities in emergencies?

DSS4NAFA contains modules which provide logistical support to decision makers in defining sampling location, sampler allocation and laboratory allocation. It also functions as a powerful visual interpretation tool that brings together multi-dimensional data usually handled to make decisions on planting and food restrictions in a nuclear emergency response situation.  Some of the functionalities of the modules are as below:

Data management:

  • Standardised data input with pre-determined data entry fields and format
  • Data housed within one server to ensure ease of data analysis
  • All data collected in the field using mobile devices and are sent directly to the server

Data visualisation:

  • GIS based visualisation for instinctive understanding of situation on the ground
  • “Logmap” for at-a-glance sampler and laboratory analyses status
  • Comprehensive information, such as current and historical decision actions, intuitively displayed on the Food Restriction Dashboard

Logistics and decision support:

  • Sampling assignments proposed based on crop calendar and land use type
  • Food and planting restrictions suggested based on the movable levels set by authorities
  • Public communication module

 

The Food Restriction Dashboard is a platform in DSS4NAFA whereby radioactivity information is collated considering the spatial distribution and time resolution of the accident, and suggests food and planting restrictions based on the level of risk and the specified tolerance levels (Source FAO-IAEA).

What feedback did you get from real users during the design/development of the DSS?

The development of DSS4NAFA was highly iterative and findings from the process were invaluable. Some lessons learned during its development include the necessity for stakeholder involvement during the design process, the usage of a “one-house approach” for centralised data, and the importance of building a tool that is flexible enough to be used during emergency response and routine monitoring operations.

The system has generated a lot of interest when shown during several IAEA workshops and conferences such as at EGU, indicating the need for this type of system.

What do you think will be the main challenges in the application of the DSS4NAFA?

Two challenges are foreseen in the deployment of DSS4NAFA. The first is to explain the benefits of the system to countries with pre-existing Nuclear Emergency Response systems. We are confident that we can succeed as DSS4NAFA is modular, thus Member States can select and implement the components that suit their needs best.

Secondly, there could be some learning associated with the implementation of DSS4NAFA. To facilitate this process for governmental data analysts, user experience will be one of the major focus for improvement during the beta testing phase. We strive to develop DSS4NAFA such that the system will be intuitive for use to its fullest potential, even with minimal prior training.

The development of DSS4NAFA is part of the Joint FAO/IAEA Division Mandate in Preparedness and Response to Nuclear and Radiological Emergencies Affecting Food and Agriculture to promote the management of intra- and interagency emergency preparedness and response to nuclear accidents and radiological events affecting food and agriculture, including in the application of agricultural countermeasures.

by Jonathan Rizzi, Norwegian Institute of Bioeconomy Research

Jonathan Rizzi is the incoming ECS representative for the EGU’s Natural Hazard division. He has a bachelor in GIS and Remote Sensing and a master and a PhD in Environmental Sciences. He is a researcher at the Norwegian Institute of Bioeconomy Research and has worked in the field of climate change and risk assessment for the last several years.

Editor’s Note: This post first appeared on the EGU Natural Hazards (NH) Division blog. Read the original post here.

A young participant’s experience at the 2018 General Assembly: So much to discover!

A young participant’s experience at the 2018 General Assembly: So much to discover!

Today we welcome probably one of the youngest participants who attended the 2018 General Assembly, Pariphat Promduangsri, a 16-year-old science baccalaureate student at Auguste Renoir high school in Cagnes-sur-mer, France, as our guest blogger. With a deep interest in the natural world and in taking care of the environment, Pariphat was a keen participant at the conference. She gave both oral and poster presentations in sessions on Geoscience Games and on Geoethics. She enjoyed particularly the sessions on education and geoscience.

The 2018 EGU conference in April was my first time attending the General Assembly; it was the biggest gathering that I have ever been to, and I think that I was most likely one of the youngest participants ever at the EGU General Assembly.  Last year, my sister, Pimnutcha, went to the 2017 General Assembly with our stepfather, David Crookall.  When she got home, she told me how exciting and interesting the conference was.  She also wrote a blog post for GeoLog about her experience.

This year, it was my chance to attend this conference.  However, the dates were still in the school term time, so I asked my high school teachers and director if they would let me be absent from school.  They agreed, and told me that it would be a great opportunity to learn many things.

My stepfather and I arrived in Vienna on the Saturday before the conference; it was not as cold as I thought it would be.  On Sunday, we went to a pre-conference workshop titled ‘Communicating your research to teachers, schools and the public – interactively’ organized by Eileen van der Flier-Keller and Chris King. It was very interesting.  They helped us to think more clearly about aspects of teaching geoscience and how pupils can learn more effectively.

So began an enriching and wonderful week.  We attended many oral and poster sessions.

During the conference, I had the opportunity to participate in two different sessions, giving two presentations in each – one oral and three poster presentations in all.

David and I doing the oral presentation (Credit: Pariphat and David Crookall)

The first session that I attended was Games for geoscience (EOS17), convened by Christopher Skinner, Sam Illingworth and Rolf Hut.  Here I did one oral presentation and one ready-to-play poster.  This session was the very first one on the topic of geoscience games at the General Assembly, and I was lucky to be part of this momentous event.  Our oral presentation was called ‘Learning from geoscience games through debriefing’.  I did the introduction and some passages in the middle, with the rest done by David.  The main idea of our presentation was to emphasize how we may learn more effectively from games by debriefing properly; it is during the debriefing that the real learning starts. As David says, “the learning starts when the game stops”.

For our poster, ‘Global warming causes and consequences: A poster game+debriefing,’ people were invited to play our GWCC game.  We asked people to participate by drawing lines linking global warming to its causes and effects.  I had a great time talking with some dozen people who came to visit and play.

Left: David and I in front of the poster. Right: Explaining to Marie Piazza how to play the GWCC game. (Credit: Pariphat and David Crookall)

The Geoscience Games Night was organized by the conveners of Games for Geoscience.  Many people brought games of all kinds to share and play, and even more people came to play.  The atmosphere was one of enjoyment, socializing and learning.  I played a game about the water cycle, based on the well-known board game Snakes and Ladders.  It was an exciting time.  At the end of the session, Sam Illingworth came to tell me that earlier in the day I did a great job for the oral presentation.  I felt really happy about his compliment.

Pictures of me playing games in the Geoscience Games Night session. (Credit: Pariphat and David Crookall)

The second session was titled Geoethics: Ethical, social and cultural implications of geoscience knowledge, education, communication, research and practice (EOS4), convened by Silvia Peppoloni, Nic Bilham, Giuseppe Di Capua, Martin Bohle, and Eduardo Marone.  In this session, we presented two interactive posters.  One was called ‘Learning geoethics: A ready-to-play poster’.  This was a game where people are invited to work together in a small group.  The game is in five steps:

  1. Individuals are given a hand of 12 cards each representing an environmental value. Here are four examples of values cards:
    • Water (including waterways, seas) should have similar rights as humans, implying protection by law.
    • Water quality must be protected and guaranteed by all people living in the same watershed. Water polluters should be punished.
    • All people with community responsibility (politicians, mayors, directors, managers, etc) must pass tests for basic geosciences (esp climate science) and geoethics.
    • Families and schools have an ethical and legal obligation to promote respect for others, for the environment, for health, for well-being and for equitable prosperity.
  2. Individually, they then select six of the 12 cards based on importance, urgency, etc.;
  3. Then, in small groups of three participants, they discuss their individually-selected choices from step 2.  Collectively, they achieve consensus and choose only six cards for the group;
  4. The group then continues to reach a consensus in a rank ordering of the six cards;
  5. Debriefing about (a) the values and (b) the group process using consensus.

 

The second poster was titled ‘Geo-edu-ethics: Learning ethics for the Earth’.  In this interactive poster, we asked participants to contribute their ideas for geoethics in education, or as we call it, geo-edu-ethics.  We received excellent feedback from viewers and contributors to this poster.

Participants contributing their ideas to our poster. (Credit: Pariphat and David Crookall)

We must make geoethics a central part of education because it is crucial for future generations.  Indeed our Geo-edu-ethics poster stated, “we need people to learn, and grow up learning, about what is right and wrong in regard to each aspect of our personal earth citizen lives.  That needs nothing short of a recast in educational practice for all educational communities (schools, universities, ministries, NGOs) across the globe.  It is doable, but it is urgent”.

Also, we must all realize that “education is inconceivable without ethics.  Geo-education is impossible without geoethics… Geo-conferences (including the EGU) include ever greater numbers of sessions related to experiential learning.  Experiential learning is at the heart of much in the geo-sciences.  An already large number of simulation/games exist on a wide variety of topics in geoethics,” (extract from Learning Geoethics poster).

This explains why a conference like the General Assembly is so important.  We can learn from the enriching experience provided by the conference itself, and also learn about opportunities for experiences in the field.

During the week, I went to many different sessions; I met many new people, all of whom who were friendly and down-to-earth (so to speak!).  It was a pleasure to be part of the General Assembly and it is also a good opening to the professional world.  The EGU allowed me to discover many great things about several fields in the geosciences and about the Earth.  It was indeed an exciting time!

I would like to thank Silvia Peppoloni, Giuseppe Di Capua and their fellow co-conveners from the International Association for Promoting Geoethics and the Geological Society of London; I admire the work that they are doing.  I enjoyed the evening meal with everybody at the Augustinerkeller Bitzinger in the beautiful city night of Vienna.  I also wish to thank Christopher Skinner, Rolf Hut and Sam Illingworth, co-conveners of the Games for Geoscience session.  They gave a wonderful opportunity to be part of their sessions and to learn more.

I also thank my high school teachers for letting me be learn outside school and in a professional setting.

I hope to see more pupils at the EGU! Please join me on LinkedIn.

by Pariphat Promduangsri

Pariphat Promduangsri is a 16-year-old science baccalaureate student at Auguste Renoir high school in Cagnes-sur-mer, France. Her native country is Thailand. She has lived in France for over four years. She speaks English, French, Italian and Thai. When she is not studying or climbing mountains (she has already done most of the Tour du Mont Blanc), she likes playing the piano. Later she will probably persue a career taking care of the environment and the Earth.

 

Giving back to the city: First EGU Public Lecture at the General Assembly 2018 in Vienna

Giving back to the city: First EGU Public Lecture at the General Assembly 2018 in Vienna

The inaugural EGU Public Lecture, titled ‘After Paris: Are we getting the climate crisis under control?’, took place last April at the 2018 General Assembly in the Natural History Museum of Vienna.

In this first public lecture, Stefan Rahmstorf, a climate scientist at the Potsdam Institute for Climate Impact Research in Germany, took the audience on a fascinating journey through the climate system, discussed its impact around the world, and addressed whether the Paris Agreement will mitigate the risks of Earth’s changing climate. Claudia Volosciuk from the World Meteorological Organization reports on the lecture.

Our pale blue dot

Rahmstorf started by taking a look at the small and fragile planet Earth from space, explaining the ways in which Earth receives and radiates energy, including an animation showing the history of greenhouse gas emissions.

He then went into more detail, showing for example the sources and sinks of carbon dioxide and how its increase in the atmosphere is human-caused. The lecture covered multiple geoscientific disciplines and highlighted their connections to each other: from coral reefs to the cryosphere, the oceans to the atmosphere, and hurricanes to deserts.

Studying Earth’s climate

Stefan Rahmstorf explaining the ways in which Earth receives and radiates energy, and the impacts of the additional carbon dioxide that is emitted to the atmosphere. Credit: Hischam Momen / Natural History Museum of Vienna

The audience also gained insight into the various methods that geoscientists use to study different aspects and time scales of the Earth system.

For example, scientists estimate potential future climate outcomes, by employing climate models to analyse the Earth system’s response to different greenhouse gases emission rates, also known as climate scenarios.

To reconstruct Earth’s past climate, researchers have used natural archives (like ice cores or tree rings), and written records. These observations and reconstructions reveal that the hottest summer in Europe since 1500 took place in 2010, followed by 2003, 2002, 2006 and 2007. “I believe that you don’t need to ask a statistician if you want to know whether this is just chance, it’s clear that this is a systematic effect,”* emphasised Rahmstorf.

The Paris Agreement

Referring to the presentation’s title, Rahmstorf highlighted the great success of ratifying the Paris climate accord to limit global temperature rise to well below two degrees above pre-industrial levels, but he  argued that it came 20 years too late. If the agreement had been reached earlier, there would have been more time for countries to curb carbon emission rates and transition to a carbon-free economy, explained Rahmstorf.

He also cautioned that the agreement isn’t a perfect solution as it still implies a substantial warming. For instance, if we met the Paris agreement’s global temperature rise goal, Rahmstorf noted that the average temperature over land would be higher than the global average, as the oceans do not warm as strongly as land masses. Reaching the Paris agreement goals would still create conditions beyond what Earth has experienced for hundreds of thousands of years.

Rahmstorf suggested mechanisms that policy makers could adopt to increase the speed of emission reduction, which is not yet sufficient to reach the Paris agreement goals. These include establishing a minimum price to emit carbon dioxide and ending subsidies for fossil fuels, which are currently still higher than renewable energy subsidies.

He also warned that the longer we wait to decarbonise our economy, the faster we will have to reduce our emission levels in the future. “The famous climate scenarios are called scenarios and not forecasts,” Rahmstorf explained, “Humankind has the choice whether it wants to emit a lot or a little CO2.”*

EGU and Vienna

The General Assembly has been held in Vienna for more than a decade and the EGU has a very good relationship with the city, according to EGU President Jonathan Bamber. “We thought it is about time that we try an experiment and give something back to the city,” said Bamber, “to share with you our enthusiasm and excitement about the science we do.”

Stefan Rahmstorf (left), Jonathan Bamber (center), and Christian Koeberl (right) at the 2018 EGU Public Lecture. Credit: Hischam Momen / Natural History Museum of Vienna

The director general of the Natural History Museum of Vienna, Christian Koeberl, highly appreciated the Union’s decision to conduct the public lecture at the museum, as the institution has a variety of geoscientific activities, including preserving collections and carrying out research projects.

“Today’s topic is one that interests and affects us all, namely climate. Climate is obviously something that is strongly connected with our understanding of the Earth, but also with our interaction as humans with the Earth,”* Koeberl remarked. The event was at full capacity, attended by an audience spanning all age groups, suggesting that Koeberl’s sentiment was widely shared.

By Claudia Volosciuk, World Meteorological Organization

*Quotation is a translation from the German original