GeoLog

Geomagnetism

April GeoRoundUp: the best of the Earth sciences from the 2018 General Assembly

April GeoRoundUp: the best of the Earth sciences from the 2018 General Assembly

The 2018 General Assembly took place in Vienna last month, drawing more than 15,000 participants from 106 countries. This month’s GeoRoundUp will focus on some of the unique and interesting stories that came out of research presented at the Assembly.

Mystery solved

The World War II battleship Tirpitz was the largest vessel in the German navy, stationed primarily off the Norwegian coastline as a foreboding threat to Allied armies. The ship was 250 metres in length and capable of carrying around 2,500 crewmates.

Despite its massive size, the vessel’s presence often went unnoticed as it moved between fjords, masked by a chemical fog of chlorosulphuric acid released by the Nazi army.

Ultimately the ship sank and the war ended, but evidence of the toxic smog still lingers today, in the tree rings of Norway’s nearby forests.

Claudia Hartl, a dendrochronologist from the Johannes Gutenberg University in Mainz, Germany, made this discovery unexpectedly while sampling pines and birches near the Norwegian village Kåfjord. She and her research team presented their findings at the General Assembly in Vienna last month.

The German battleship Tirpitz partly covered by a smokescreen at Kaafjord. (Image Credit: Imperial War Museums )

Hartl had been examining wood cores to draw a more complete picture of past climate in the region when she noticed that some trees completely lacked rings dating to 1945,” reported Julissa Treviño in Smithsonian Magazine.

The discovery was odd since it is rare for trees to have completely absent rings in their trunks. Tree ring growth can be stunted by extreme cold or insect infestation, but neither case is severe enough to explain the missing tree rings from that time period.

“A colleague suggested it could have something to do with the Tirpitz, which was anchored the previous year at Kåfjord where it was attacked by Allied bombers,” explains Jonathan Amos from BBC News.

The researchers indeed found physical and chemical evidence of the smokescreen damage on the trees, demonstrating the long-lasting impact warfare can impart onto the environment.

 

What you might have missed

Seismicity of city life

Researchers use seismometers to record Earth’s quakes and tremors, but some seismologists have employed these instruments for a different purpose, to show how humans make cities shake. “This new field of urban seismology aims to detect the vibrations caused by road traffic, subway trains, and even cultural activities,” reports EGU General Assembly Press Assistant Tim Middleton on GeoLog.

With seismometers, Jordi Díaz and colleagues at the Institute of Earth Sciences Jaume Almera in Barcelona, Spain have been able to pick up the seismic signals of major football games and rock concerts, like footballer Lionel Messi’s winning goal against Paris Saint-Germain and Bruce Springsteen’s Barcelona show.

Seismic record captured by the seismometer during the Bruce Springsteen concert. The upper panel shows the seismogram, while the lower panel shows the spectrogram where it is possible to see the distribution of the energy between the different frequencies. (Image Credit: Jordi Díaz)

Díaz’s project first began as an outreach campaign, to teach the general public about seismometers, but now he and his colleagues are exploring other applications. For example, the data could help civil engineers with tracking traffic and monitoring how buildings withstand human-induced tremors.

Antarctica seeing more snow

Meanwhile in Antarctica, snowfall has increased by 10 percent in the last 200 years, according to new research presented at the meeting. After analysing 79 ice cores, a research team led by Liz Thomas from the British Antarctic Survey discovered that Antarctica’s increased snowfall since 1800 was equivalent to 544 trillion pounds of water, about twice the volume of the Dead Sea.

It has been predicted that snowfall increase would be a consequence of global warming, since a warmer atmosphere can hold more moisture, thus resulting in more precipitation. However, these ice core observations reveal this effect has already been happening. The new finding implies that Earth’s sea level has risen slightly less than it would have otherwise, but only by about a fifth of a milimetre. Though overall, this snowfall increase is not nearly enough to offset Earth’s increased ice loss.

Ocean’s tides create a magnetic field

Also at the Assembly, scientists presented new data collected from a team of ESA satellites known as Swarm, In particular, the satellite observations recently mapped magnetic signals induced by Earth’s ocean tides. As the planet’s tides ebb and flow, drawn by the Moon’s gravitational pull, the salty water generates electric currents. And these currents create a tiny magnetic field, around 20,000 times weaker than the global magnetic field.

Scientists involved with the Swarm project say the magnetic view provides new insight into Earth’s ocean flow and magnetic field, can improve our understanding of climate change, and help researchers build better Earth system models.

When salty ocean water flows through Earth’s magnetic field, an electric current is generated, and this in turn induces a magnetic signal. (Credit: ESA/Planetary Visions)

 

Other noteworthy stories:

 

To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Imaggeo on Mondays: Chilean relics of Earth’s past

Imaggeo on Mondays: Chilean relics of Earth’s past

As Earth’s environment changes, it leaves behind clues used by scientists to paint portraits of the past: scorched timber, water-weathered shores, hardened lava flows. Chile’s Conguillío National Park is teeming with these kind of geologic artifacts; some are only a few years old while others have existed for more than 30 million years. The photographer Anita Di Chiara, a researcher at Lancaster University in the UK, describes how she analyses ancient magnetic field records to learn about Earth’s changing crust.

Llaima Volcano, within the Conguillío National Park in Chile, is in the background of this image with its typical double-hump shape. The lake is called Lago Verde and the trunks sticking out are likely remnants from one of the many seasonal fires that have left their mark on this area (the last one was in 2015).

The lake sits on pyroclastic deposits that erupted from the Llaima Volcano. On these deposits, on the side of the lake, you can even track the geologic record of seasonal lake level changes, as the layers shown here mark the old (higher) level of the lake during heavy winter rains.

The lake also overlaps the Liquiñe-Ofqui Fault, which runs about 1000 kilometers along the North Patagonian Andes. The fault has been responsible for both volcanic and seismic activity in the region since the Oligocene (around 30 million years ago).

I was there as field assistant for Catalina Hernandez Moreno, a geoscientist at Italy’s National Institute of Geophysics and Volcanology, studying ancient magnetic field records imprinted on rocks. We examined the rocks’ magnetised minerals (aligned like a compass needle to the north pole) as a way to measure how fragmented blocks of the Earth’s crust have rotated over time along the fault.

From this fieldwork we were able to examine palaeomagnetic rotation patterns from 98 Oligocene-Pleistocene volcanic sites. Even more, we concluded that the lava flows from the Llaima Volcano’s 1958 eruption would be a suitable site for studying the evolution of the South Atlantic Anomaly, an area within the South Atlantic Ocean where the Earth’s magnetic field is mysteriously weaker than expected.

By Anita Di Chiara, a research technician at the Lancaster Environment Centre in the UK 

References

Hernandez-Moreno, C., Speranza, F., & Di Chiara, A.: Understanding kinematics of intra-arc transcurrent deformation: Paleomagnetic evidence from the Liquiñe-Ofqui fault zone (Chile, 38-41°S), Tectonics, https://doi.org/10.1002/2014TC003622, 2014.

Hernandez-Moreno, C., Speranza, F., & Di Chiara, A.: Paleomagnetic rotation pattern of the southern Chile fore-arc sliver (38°S-42°S): A new tool to evaluate plate locking along subduction zones. Journal of Geophysical Research: Solid Earth, 121(2), https://doi.org/10.1002/2015JB012382, 2016.

Di Chiara, A., Moncinhatto, T., Hernandez Moreno, C., Pavón-Carrasco, F. J., & Trindade, R. I. F.: Paleomagnetic study of an historical lava flow from the Llaima volcano, Chile. Journal of South American Earth Sciences, 77, https://doi.org/10.1016/j.jsames.2017.04.014, 2017.

 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submittheir photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Magnetic interaction

Imaggeo on Mondays: Magnetic interaction

Space weather is a ubiquitous, but little known, natural hazard. Though not as tangible as a volcanic eruption, storm or tsunami wave, space weather has the potenital to cause huge economic losses across the globe. In Europe alone, the interaction of solar wind with our planet’s magnetosphere, ionosphere and thermosphere, could lead to disrutions to space-based telecommunications, broadcasting, weather services and navigation, as well as distributions of power and terrestrial communications.

The Sun’s magnetic field drives all solar activity, from coronal mass ejections (CMEs), to high-speed solar wind, and solar energetic particles. While not all solar activity impacts the Earth, when it does, it can cause a geomagnetic storm. The Earth’s magnetic field creates, the magnetosphere which protects us from most of the particles the Sun emits. But when a “CME or high-speed stream arrives at Earth it buffets the magnetosphere. If the arriving solar magnetic field is directed southward it interacts strongly with the oppositely oriented magnetic field of the Earth. The Earth’s magnetic field is then peeled open like an onion, allowing energetic solar wind particles to stream down the field lines to hit the atmosphere over the poles,” explains NASA.

Aurorae are the most visible effect of the sun’s activity on the Earth’s atmosphere. They usually occur 80 to 300 km above the Earth’s surface, but can extend laterally for thousands of kilometers. They most commonly occur at the Earth’s poles, meaning only those at very northern, or southern, latitudes get the chance to see them (at least regularly). However, they are a reminder of the Sun’snpower and the threat posed by space weather.

To bring aurora to those who haven’t seen them before, and raise awarness about space weather at the same time, Jean Lilensten, director of research at l’Institut de planétologie et d’astrophysique de Grenoble (IPAG) in France, created the Planeterrella; an experiment which includes two spheres, one acting as the Earth and the other acting as the Sun. It allows for auroral displays, and demonstrations of other phenomena which ocurr in the space environment, to be brought into classrooms and public outreach events.

Today’s featured image shows the Planeterrella and several space phenomena. The violet colors on the big sphere ( the “star” ) are due to N2+ (a nitrogen cation), while the redish light on the little one is due to nitrogen. Both colours are seen in actual aurorae on Earth. The red “bow” in the middle, between the two spheres, is a bow shock similar to the magnetopause between Earth and the Sun (of course not to scale). Finally, a direct magnetic reconnection between the two spheres can be seen at the bottom.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

GeoTalk: The anomaly in the Earth’s magnetic field which has geophysicists abuzz

GeoTalk: The anomaly in the Earth’s magnetic field which has geophysicists abuzz

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Jay Shah, a PhD student at Imperial College London, who is investigating the South Atlantic Anomaly, a patch over the South Atlantic where the Earth’s magnetic field is weaker than elsewhere on the globe. He presented some of his recent findings at the 2017 General Assembly.

First, could you introduce yourself and tell us a little more about your career path so far?

I’m currently coming to the end of my PhD at Imperial College London. For my PhD, I’ve been working with the Natural Magnetism Group at Imperial and the Meteorites group at the Natural History Museum, London to study the origin of magnetism in meteorites, and how meteoritic magnetism can help us understand early Solar System conditions and formation processes.

Before my PhD I studied geology and geophysics, also at Imperial, which is when I studied the rocks that I spoke about at the 2017 EGU General Assembly.

What attracted you to the Earth’s magnetic field?

Jay operates the Vibrating Sample Magnetometer at the lab at Imperial. Credit: Christopher Dean/Jay Shah

My initial interest in magnetism, the ‘initial spark’ if you like, was during my undergraduate, when the topic was introduced in standard courses during my degree.

The field seemed quite magical: palaeomagnetists [scientists who study the Earth’s magnetic field history] are often known as palaeomagicians. But it’s through rigorous application of physics to geology that palaeomagicians can look back at the history of the Earth’s magnetic field recorded by rocks around the world. I was attracted to the important role palaeomagnetism has played in major geological discoveries such as plate tectonics and sea-floor spreading.

Then, during my undergraduate I had the opportunity to do some research alongside my degree, via the ‘Undergraduate Research Opportunities Programme’ at Imperial. It was certainly one of the bonuses of studying at a world-class research university where professors are always looking for keen students to help move projects forward.

I was involved in a project which focused on glacial tillites [a type of rock formed from glacial deposits] from Greenland to look into inclination shallowing; which is a feature of the way magnetism is recorded in rocks that can lead to inaccurate calculation of palaeolatitutdes [the past latitude of a place some time in the past]. Accurate interpretation of the direction of the Earth’s magnetic field recorded by rocks is essential to reconstructing the positions of continents throughout time.

This was my first taste of palaeomagnetism and opened the doors to the world of research.

So, then you moved onto a MSci where one of your study areas is Tristan da Cunha, a volcanic island in the South Atlantic. The location of the island means that you’ve dedicated some time to studying the South Atlantic Anomaly (SAA). So, what is it and why is it important?

The SAA is a present day feature of the magnetic field and has existed for the past 400 years, at least, based on observations. It is a region in the South Atlantic Ocean where the magnetic field is weaker than it is expected to be at that latitude.

The Earth’s magnetic field protects the planet and satellites orbiting around Earth from charged particles floating around in space, like the ones that cause aurorae. The field in the SAA is so weak that space agencies have to put special measures in place when their spacecraft orbit over the region to account for the increased exposure to radiation. The Hubble telescope, for example, doesn’t take any measurements when it passes through the SAA and the International Space Station has extra shielding added to protect the equipment and astronauts.

If you picture the Earth’s magnetic field:  it radiates from the poles towards the Earth’s equator, like butterfly wings extending out of the planet. In that model, which is what palaeomagnetic theory is based on, it is totally unexpected to have a large area of weakness.

Earth’s magnetic field connects the North Pole (orange lines) with the South Pole (blue lines) in this NASA-created image, a still capture from a 4-minute excerpt of “Dynamic Earth: Exploring Earth’s Climate Engine,” a fulldome, high-resolution movie. Credit: NASA Goddard Space Flight Center

We also know that the Earth’s magnetic field reverses (flips its polarity), on average, every 450,000 years. However, it has been almost twice as long since we have had a flip, which means we are ‘overdue’ a reversal. People like to look for signs that the field will reverse soon; could it be that the SAA is a feature of an impending (in geological time!) reversal? So, it becomes important to understand the SAA in that respect too.

So, how do you approach this problem? If the SAA is something you can’t see, simply measure, how do you go about studying it?

Palaeomagnetists can look to the rock record to understand the history of the Earth magnetic field.

Volcanic rocks best capture Earth’s magnetic field because they contain high percentages of iron bearing minerals, which align themselves with the Earth’s magnetic field as the lavas cool down after being erupted. They provide a record of the direction and the strength of the magnetic field at the time they were erupted.

In particular, I’ve been studying lavas from Tristan da Cunha (a hotspot island) in the Atlantic Ocean similar in latitude to South Africa and Brazil. There are about 300 people living on the island, which is still volcanically active. The last eruption on the island was in 1961. In 2004 there was a sub-marine eruption 24 km offshore.

Jürgen Matzka (GFZ Potsdam) collected hundreds and hundreds of rock cores from Tristan da Cunha on sampling campaigns back in 2004 and 2006.

We recently established the age of the lavas we sampled as having erupted some 46 to 90 thousand years ago. Now that we know the rock ages, we can look at the Earth’s magnetic field during this time window.

Why is this time window important?

These lavas erupted are within the region of the present day SAA, so we can look to see whether any similar anomalies to the Earth’s magnetic field existed in this time window.

So, what did you do next?

Initial analyses of these rocks focused on the direction of the magnetic field recorded by the rocks. The directional data can be used to trace back past locations of the Earth’s magnetic poles.

Then, during my master’s research dissertation I had the opportunity to experiment on the rocks from Tristan da Cunha with the focus on palaeointensity [the ancient intensity of the Earth’s magnetic field recorded by the rocks]. We found that they have the same weak signature we observe today in the SAA but in this really old time window.

The rocks from Tristan da Cunha, 46 to 90 thousand years ago, recorded a weaker magnetic field strength compared to the strength of the magnetic field of the time recorded by other rocks around the world.

Some of the lavas sampled on Tristan da Cunha. Credit: Jürgen Matzka

What does this discovery tell us about the SAA?

I mentioned at the start of the interview that, as far as we thought, the anomaly didn’t extend back more than 400 years ago – it’s supposed to be a recent feature of the field. Our findings suggest that the anomaly is a persistent feature of the magnetic field. Which is important, because researchers who simulate how the Earth’s magnetic field behaved in the past don’t see the SAA in simulations of the older magnetic field.

It may be that the simulations are poorly constrained. There are far fewer studies (and samples) of the Earth’s magnetic directions and strengths from the Southern Hemisphere. This inevitably leads to a sampling bias, meaning that the computer models don’t have enough data to ‘see’ the feature in the past.

However, we are pretty certain that the SAA isn’t as young as the simulations indicate. You can also extract information about the ancient magnetic field from archaeological samples. As clay pots are fired they too have the ability to record the strength and direction of the magnetic field at the time. Data recorded in archaeological samples from southern Africa, dating back to 1250 to 1600 AD also suggest the SAA existed at the time.

Does the fact that the SAA is older than was thought mean it can’t used be to indicate a reversal?

It could still be related to a future reversal – our findings certainly don’t rule that out.

However, they may be more likely to shed some light on how reversals occur, rather than when they will occur.

It’s been suggested that the weak magnetic anomaly may be a result of the Earth’s composition and structure at the boundary between the Earth’s core and the mantle (approximately 3000 km deep, sandwiched between the core and the Earth’s outermost layer known as the crust). Below southern Africa there is something called a large low shear velocity province (LLSVP), which causes the magnetic flux to effectively ‘flow backwards’.

These reversed flux patches are the likely cause of the weak magnetic field strength observed at the surface, and could well indicate an initiating reversal. However, the strength of the Earth’s magnetic field on average at present is stronger than what we’ve seen in the past prior to field reversals.

The important thing is the lack of data in the southern hemisphere. Sampling bias is pervasive throughout science, and it’s been seen here to limit our understanding of past field behaviour. We need more data from around the world to be able to understand past field behaviour and to constrain models as well as possible.

Sampling bias is pervasive throughout science, and it’s been seen here to limit our understanding of past field behaviour. This image highlights the problem (black dots = a sampling location). Modified from an image in the supporting materials of Shah, J., et al. 2016. Credit: Jay Shah.

You are coming towards the end of your PhD – what’s next?

So I moved far away from Tristan da Cunha for my PhD and have been looking at the magnetism recorded by meteorites originating from the early Solar System. I’d certainly like to pursue further research opportunities working with skills I’ve gained during my PhD. I want to continue working in the magical world of magnetism, that’s for sure! But who knows?

Something you said at the start of the interview struck me and is a light-hearted way to round-off our chat. You said that palaeomagnetism are often referred to as ‘paleaomagicians’ by others in the Earth sciences, why is that so?

Over the history of the geosciences, palaeomagntists have contributed to shedding light on big discoveries using data that not very many people work with. It’s not a big field within the geosciences, so it’s shrouded in a bit of mystery. Plus, it’s a bit of a departure from traditional geology, as it draws so heavily from physics. And finally, it’s not as well established as some of the other subdisciplines within geology and geophysics, it’s a pretty young science.  At least, that’s why I think so, anyway!

Interview by Laura Roberts Artal, EGU Communications Officer

References and further reading

Shah, J., Koppers, A.A., Leitner, M., Leonhardt, R., Muxworthy, A.R., Heunemann, C., Bachtadse, V., Ashley, J.A. and Matzka, J.: Palaeomagnetic evidence for the persistence or recurrence of geomagnetic main field anomalies in the South AtlanticEarth and Planetary Science Letters441, pp.113-124, doi: 10.1016/j.epsl.2016.02.039, 2016.

Shah, J., Koppers, A.A., Leitner, M., Leonhardt, R., Muxworthy, A.R., Heunemann, C., Bachtadse, V., Ashley, J.A. and Matzka, J.: Paleomagnetic evidence for the persistence or recurrence of the South Atlantic geomagnetic Anomaly. Geophysical Research Abstracts, Vol. 19, EGU2017-7555-3, 2017, EGU General Assembly 2017.