GeoLog

fieldwork

Imaggeo on Mondays: An epic ‘house’ move across the ice

Imaggeo on Mondays: An epic ‘house’ move across the ice

In 2008 the NEEM Deep Ice Core Project was initiated by 14 partner countries in Northwestern Greenland (camp position 77.45°N 51.06°W) with the aim to drill from the very top of the  Greenland ice cap to its base; obtaining  ice from as far back as the last interglacial period- the Eemian – some 130,000 years old.

At the start of the 2008 field season, the NEEM camp consisted of a single heavy-duty tent, some vehicles, and a skiway. Over the summer months, the facilities could host up to 30 researchers at a time. Extra heavy duty tents were built to accommodate everyone comfortably. However to further ease the work of the many researchers who contributed to the project over several years and to create a common space, ‘the dome’ was build. Spread over three stories, the round black building included a kitchen and eating space on the ground floor, a working and relaxing area on the first floor for and a top floor for observing weather conditions before incoming flights.

After three summers of drilling through the icecap, bedrock was reached in 2010 and the Eemian ice was secured.

The 2011 season was spent on surface programs and some drilling into bedrock. Finally, in 2012 the deep ice core drilling project NEEM was terminated and camp was dismantelled.  Most of the heavy equipment was left on the NEEM site with supplies and equipment stored inside the main dome, in two garages, and on seven heavy sleds. The large dome was put on skis with the intention of moving it to the next drilling site, though exactly where was yet to be determined and  funds also needed to be secured.

In 2015, a group of 12 people, including myself, travelled back to the NEEM site. We packed down the the garages and stored them on sledges, we removed 3 years’ worth of accumulated snow (~1.5 m) from the sledges packed in 2012 and from the 45 ton main dome, and finally made the whole lot ready for moving.  Using specialist snowploughs (known as a PistenBully, sponsored by NSF ) we relocated to our new drilling site, EastGRIP at the North East Greenland Ice Stream (NEGIS).

The trip began on Monday 18th May in the afternoon. Progress was slow. By 20.30 the traverse consisting of 8 vehicles had traveled 24 km along the ice flow divide towards the south-east, towing an incredible  143 tonnes worth of equipment, not including the weight of the vehicles themselves.

After an arduous eight day traverse, on 26th May the convoy made the last 53 km of the journey and arrived at EastGRIP in the afternoon. On arrival, the team only had 3000 litres of fuel left, which would have only supported the traverse for one more day. The total route travelled was 449 km.

The focus of the work at the new ice core camp at EastGRIP is different to that of the NEEM project. While the overall aim is to also drill to the bottom of the Greenland ice sheet, this time the goal is to understand the fast flowing ice at NEGIS.

Ice streams, such as NEGIS, are responsible for draining a significant fraction of the ice from the Greenland Ice Sheet. By drilling to the bottom of the ice sheet the project hopes to gain new and fundamental information on ice stream dynamics, thereby improving the understanding of how ice streams will contribute to future sea-level change. The drilled core will also provide a new record of past climatic conditions from the northeastern part of the Greenland Ice Sheet which will be analysed at numerous laboratories worldwide. Similar to NEEM the project has many international partners and is managed by the Centre for Ice and Climate, Denmark with air support carried out by US ski-equipped Hercules aircraft managed through the US Office of Polar Programs, National Science Foundation.

By Helle Astrid Kjær, researcher at the Niels Bohr Institute,  University of Copenhagen

 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/

Last chance to enter the EGU Photo Contest 2017!

Last chance to enter the EGU Photo Contest 2017!

If you are pre-registered for the 2017 General Assembly (Vienna, 23 -28 April), you can take part in our annual photo competition! Winners receive a free registration to next year’s General Assembly! But hurry, there are only a few days left to enter!

Every year we hold a photo competition and exhibit in association with our open access image repository, Imaggeo and our annual General Assembly. There is also a moving image competition, which features a short clip of continuous geoscience footage. Pre-registered conference participants can take part by submitting up to three original photos and/or one moving image on any broad theme related to the Earth, planetary and space sciences.

How to enter

You will need to register on Imaggeo to upload your image, which will also be included in the database. When you’ve uploaded it, you’ll have the option to edit the image details – here you can enter it into the EGU Photo Contest – just check the checkbox! The deadline for submissions is 1 March.

The best of Imaggeo in 2016: in pictures

The best of Imaggeo in 2016: in pictures

Imaggeo, our open access image repository, is packed with beautiful images showcasing the best of the Earth, space and planetary sciences. Throughout the year we use the photographs submitted to the repository to illustrate our social media and blog posts.

For the past few years we’ve celebrated the end of the year by rounding-up some of the best Imaggeo images. But it’s no easy task to pick which of the featured images are the best! Instead, we turned the job over to you!  We compiled a Facebook album which included all the images we’ve used  as header images across our social media channels and on Imaggeo on Mondays blog post in 2016 an asked you to vote for your favourites.

Today’s blog post rounds-up the best 12 images of Imaggeo in 2016, as chosen by you, our readers.

Of course, these are only a few of the very special images we highlighted in 2016, but take a look at our image repository, Imaggeo, for many other spectacular geo-themed pictures, including the winning images of the 2016 Photo Contest. The competition will be running again this year, so if you’ve got a flare for photography or have managed to capture a unique field work moment, consider uploading your images to Imaggeo and entering the 2017 Photo Contest.

Blue Svartisen . Credit: Kay Helfricht (distributed via imaggeo.egu.eu)

When you think of a glacier the image you likely conjure up in your mind is that of bright white, icy body. So why do some glaciers, like Engabreen, a glacier in Norway, sometimes appear blue? Is it a trick of the light or some other phenomenon which causes this glacier to look so unusual?  You can learn all about it in this October post over on GeoLog.

 

‘There is never enough time to count all the stars that you want.’ . Credit: Vytas Huth (distributed via imaggeo.egu.eu). The centre of the Milky Way taken near Krakow am See, Germany. Some of the least light-polluted atmosphere of the northern german lowlands.

Among the winning images of our annual photo contest was a stunning night-sky panorama by Vytas Huth; we aren’t surprised it has been chosen as one of the most popular images of 2016 too. In this post, Vytas describes how he captured the image and how the remote location in Southern Germany is one of the few (in Europe) where it is still possible to, clearly, image the Milk Way.

 

“Above the foggy strip, this white arch was shining, covering one third of the visible sky in the direction of the ship's bow,” he explains. “It was a so-called white, or fog rainbow, which appears on the fog droplets, which are much smaller then rain droplets and cause different optic effects, which is a reason of its white colour.”

Gateway to the Arctic . Credit: Mikhail Varentsov (distributed via imaggeo.egu.eu)

“Above the foggy strip, this white arch was shining, covering one third of the visible sky in the direction of the ship’s bow,” describes Mikhail Varentsov, a climate and meteorology expert from the University of Moscow. “It was a so-called white, or fog rainbow, which appears on the fog droplets, which are much smaller then rain droplets and cause different optic effects, which is a reason of its white colour.” Mikhail captured the white rainbow while aboard the Akademik Tryoshnikov research vessel during its scientific cruise to study the effects of climate change on the Arctic.

 

History. Credit: Florian Fuchs (distributed via imaggeo.egu.eu)

The header image, History by Florian Fuchs, we used across our social media channels was popular with our Facebook followers, who chose it as one of the best of this year. The picture features La Tarta del Teide – a stratigraphic section through volcanic deposits of the Teide volcano on Tenerife, Canary Islands.

 

Find a new way . Credit: Wolfgang Fraedrich (distributed via imaggeo.egu.eu)

Lavas erupted into river waters, and as a result cooled very quickly, can give rise to fractures in volcanic rocks. They form prismatic structures which can be arranged in all kinds of patterns: horizontally (locally known as the woodpile), slightly arching (the harp) and in a radial configuration known as the rosette. The most common configuration is the ‘organ pile’ where vertical fractures form. These impressive structures are seen in the walls of the Gole dell ‘Alcantara, a system of gorges formed 8,000 years ago in the course of the river Alcantara in eastern Sicily.

 

Home Sweet Home . Credit: André Nuber (distributed via imaggeo.egu.eu)

Can you imagine camping atop some of the highest mountains in Europe and waking up to a view of snowcapped peaks, deep valleys and endless blue skies? This paints an idyllic picture; field work definitely takes Earth scientists to some of the most beautiful corners of the planet.

 

Isolated Storm . Credit: Peter Huber (distributed via imaggeo.egu.eu)

In November 2016 we featured this photograph of an isolated thunderstorm in the Weinviertel in April. The view is towards the Lower Carpathian Mountains and Bratislava about 50 kilometers from Vienna. Why do storms and isolated thunderstorms form? Find out in this post.

 

Glacial erratic rocks . Credit: Yuval Sadeh (distributed via imaggeo.egu.eu)

As glaciers move, they accumulate debris underneath their surface. As the vast frozen rivers advance, they carry the debris, which can range from pebble-sized rocks through to house-sized boulders, along with it. As the climate in the Yosemite region began to warm as the ice age came to an end, the glaciers slowly melted. Once all the ice was gone, the rocks and boulders, known as glacial erratics, were left behind.

 

Snow and ash in Iceland . Credit: Daniel Garcia Castellanos (distributed via imaggeo.egu.eu)

Icelandic snow-capped peaks are also sprinkled by a light dusting of volcanic ash in this photograph. Dive into this March 2016 post to find out the source of the ash and more detail about the striking peak.

 

Living Flows . Credit: Marc Girons Lopez (distributed via imaggeo.egu.eu)

There are handful true wildernesses left on the planet. Only a few, far flung corners, of the globe remain truly remote and unspoilt. To explore and experience untouched landscapes you might find yourself making the journey to the dunes in Sossuvlei in Namibia, or to the salty plain of the Salar Uyuni in Bolivia. But it’s not necessary to travel so far to discover an area where humans have, so far, left little mark. One of the last wilds is right here in Europe, in the northern territories of Sweden. This spectacular photograph of the Laitaure Delta is brought to you by Marc Girons Lopez, one of the winners of the 2016 edition of the EGU’s Photo Contest!

 


The power of ice. Credit: Romain Schläppy, (distributed via imaggeo.egu.eu).

The January 2016 header image across our social media was The Power of Ice, by Romain Schlappy. This vivid picture was captured from a helicopter by Romain Schläppy during a field trip in September 2011. You can learn more about this image by reading a previous imaggeo on mondays post.

 

Sea of Clouds over Uummannaq Fjord. Credit: Tun Jan Young (distributed via imaggeo.egu.eu)

The current header image, Sea of Clouds over Uummannaq Fjord by Tun Jan Young, is also a hit with our followers and the final most popular image from Imaggeo in 2016. A sudden change of pressure system caused clouds to form on the surface of the Uummannaq Fjord, Northwestern Greenland, shrouding the environment in mystery.

 

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

 

What is in your field rucksack? The bag of a mining geologist

What is in your field rucksack? The bag of a mining geologist

Inspired by a post on Lifehacker on what your average geologist carries in their rucksack/backpack, we’ve put together a few blog posts showcasing what a range of our EGU members carry in their bags whilst in the field!

Of course, it’s not only research geoscientists who carry kit! Earth scientists in industry often require a number of tools to carry out their daily duties. Today we feature the contents of Dave Perkin’s bag, a mining geologist working in a gold mine in Western Australia. In Dave’s bag, equipment to keep him safe in as he works in the depths of the Earth is almost as important as the tools he needs to fulfill his technical duties.

This bag belongs to:
Dave

Field Work location:
Underground gold mine, Western Australia

Duration of field work:
Continuous. I am employed full time to work at the mine as an Exploration Geologist.

What does your work entail?:
In order to keep producing gold the Exploration team must continually find new sources of gold to replenish what is mined. In order to do that we utilise diamond drill rigs and part of our job is managing these rigs to ensure we are drilling the most prospective areas. We also perform mapping in the underground environment – similar to surface mapping but in a much more confined space with limited exposure. In the average week we might spend a couple of days underground depending on what work needs to be done. Production geologists will spend ~6-7 hours per day underground performing their duties, such as mapping and sampling development faces and making ore/waste calls to ensure material is moved to the correct locations.

The main tasks for an exploration geologist is collating all the data available (diamond drill core logging, gold assays, underground mapping, etc.) and interpreting the mineralised domains to produce further exploration targets and mineable areas to produce gold. We will generally drill and interpret areas ~18 months before they are mined so we look at the big picture and long term goals.

The contents of Dave's field bag. Safety underground is paramount! That's why Dave's most treasured items include his safety equipment.

The contents of Dave’s field bag. Safety underground is paramount! That’s why Dave’s most treasured items include his safety equipment.

The one item I couldn’t live without:
As the mine is active we have to carry a lot of safety equipment and protective clothing. Reflective stripes on all clothes are essential as there is no natural light within the mine and this allows heavy machinery to see us when we are on foot. All personal protective equipment is required by law to be carried everywhere when underground. Two essentials are a cap lamp and hard hat (to see anything) and a self-rescuer (this is a self-contained emergency oxygen system which will provide oxygen in the event of a fire/other emergency and will last long enough to get to safety).

Aside from the legal things, the most essential item is probably spray paint. If time is limited then we will paint around interesting structures so that the surveyors can measure them and put them into 3D for interpretation. As a bare minimum, this will allow you to begin your interpretation.

If you’ve been on field work recently, or work in an industry that requires you to carry equipment, and would like the contents of your bag to feature on the blog, we’d love to hear from you. Please contact the EGU’s Communication Officer, Laura Roberts (networking@egu.eu)