GeoLog

earthquakes

The best of Imaggeo in 2015: in pictures

The best of Imaggeo in 2015: in pictures

Last year we prepared a round-up blog post of our favourite Imaggeo pictures, including header images from across our social media channels and Immageo on Mondays blog posts of 2014. This year, we want YOU to pick the best Imaggeo pictures of 2015, so we compiled an album on our Facebook page, which you can still see here, and asked you to cast your votes and pick your top images of 2015.

From the causes of colourful hydrovolcanism, to the stunning sedimentary layers of the Grand Canyon, through to the icy worlds of Svaalbard and southern Argentina, images from Imaggeo, the EGU’s open access geosciences image repository, have given us some stunning views of the geoscience of Planet Earth and beyond. In this post, we highlight the best images of 2015 as voted by our Facebook followers.

Of course, these are only a few of the very special images we highlighted in 2015, but take a look at our image repository, Imaggeo, for many other spectacular geo-themed pictures, including the winning images of the 2015 Photo Contest. The competition will be running again this year, so if you’ve got a flare for photography or have managed to capture a unique field work moment, consider uploading your images to Imaggeo and entering the 2016 Photo Contest.

Different degrees of oxidation during hydrovolcanism, followed by varying erosion rates on Lanzarote produce brilliant colour contrasts in the partially eroded cinder cone at El Golfo. Algae in the lagoon add their own colour contrast, whilst volcanic bedding and different degrees of welding in the cliff create interesting patterns.

 Grand Canyon . Credit: Credit: Paulina Cwik (distributed via imaggeo.egu.eu)

Grand Canyon . Credit: Credit: Paulina Cwik (distributed via imaggeo.egu.eu)

The Grand Canyon is 446 km long, up to 29 km wide and attains a depth of over a mile 1,800 meters. Nearly two billion years of Earth’s geological history have been exposed as the Colorado River and its tributaries cut their channels through layer after layer of rock while the Colorado Plateau was uplifted. This image was submitted to imaggeo as part of the 2015 photo competition and theme of the EGU 2015 General Assembly, A Voyage Through Scales.

Water reflection in Svalbard. Credit: Fabien Darrouzet (distributed via imaggeo.egu.eu)

Water reflection in Svalbard. Credit: Fabien Darrouzet (distributed via imaggeo.egu.eu)

Svalbard is dominated by glaciers (60% of all the surface), which are important indicators of global warming and can reveal possible answers as to what the climate was like up to several hundred thousand years ago. The glaciers are studied and analysed by scientists in order to better observe and understand the consequences of the global warming on Earth.

Waved rocks of Antelope slot canyon - Page, Arizona by Frederik Tack (distributed via imaggeo.egu.eu).

Waved rocks of Antelope slot canyon – Page, Arizona by Frederik Tack (distributed via imaggeo.egu.eu).

Antelope slot canyon is located on Navajo land east of Page, Arizona. The Navajo name for Upper Antelope Canyon is Tsé bighánílíní, which means “the place where water runs through rocks.”
Antelope Canyon was formed by erosion of Navajo Sandstone, primarily due to flash flooding and secondarily due to other sub-aerial processes. Rainwater runs into the extensive basin above the slot canyon sections, picking up speed and sand as it rushes into the narrow passageways. Over time the passageways eroded away, making the corridors deeper and smoothing hard edges in such a way as to form characteristic ‘flowing’ shapes in the rock.

 Just passing Just passing. Credit: Camille Clerc (distributed via imaggeo.egu.eu)

Just passing. Credit: Camille Clerc (distributed via imaggeo.egu.eu)

An archeological site near Illulissat, Western Greenland On the back ground 10 000 years old frozen water floats aside precambrian gneisses.

Sarez lake, born from an earthquake. Credit: Alexander Osadchiev (distributed via imaggeo.egu.eu)

Sarez lake, born from an earthquake. Credit: Alexander Osadchiev (distributed via imaggeo.egu.eu)

Beautiful Sarez lake was born in 1911 in Pamir Mountains. A landslide dam blocked the river valley after an earthquake and a blue-water lake appeared at more than 3000 m over sea level. However this beauty is dangerous: local seismicity can destroy the unstable dam and the following flood will be catastrophic for thousands Tajik, Afghan, and Uzbek people living near Mugrab, Panj and Amu Darya rivers below the lake.

Badlands national park, South Dakota, USA. Credit: Iain Willis (distributed via imaggeo.egu.eu)

Badlands national park, South Dakota, USA. Credit: Iain Willis (distributed via imaggeo.egu.eu)

Layer upon layer of sand, clay and silt, cemented together over time to form the sedimentary units of the Badlands National Park in South Dakota, USA. The sediments, delivered by rivers and streams that criss-crossed the landscape, accumulated over a period of millions of years, ranging from the late Cretaceous Period (67 to 75 million years ago) throughout to the Oligocene Epoch (26 to 34 million years ago). Interbedded greyish volcanic ash layers, sandstones deposited in ancient river channels, red fossil soils (palaeosols), and black muds deposited in shallow prehistoric seas are testament to an ever changing landscape.

Late Holocene Fever. Credit: Christian Massari (distributed via imaggeo.egu.eu)

Late Holocene Fever. Credit: Christian Massari (distributed via imaggeo.egu.eu)

Mountain glaciers are known for their high sensitivity to climate change. The ablation process depends directly on the energy balance at the surface where the processes of accumulation and ablation manifest the strict connection between glaciers and climate. In a recent interview in the Gaurdian, Bernard Francou, a famous French glaciologist, has explained that the glacier depletion in the Andes region has increased dramatically in the second half of the 20th century, especially after 1976 and in recent decades the glacier recession moved at a rate unprecedented for at least the last three centuries with a loss estimated between 35% and 50% of their area and volume. The picture shows a huge fall of an ice block of the Perito Moreno glacier, one of the most studied glaciers for its apparent insensitivity to the recent global warming.

 Nærøyfjord: The world’s most narrow fjord . Credit: Sarah Connors (distributed via imaggeo.egu.eu)

Nærøyfjord: The world’s most narrow fjord . Credit: Sarah Connors (distributed via imaggeo.egu.eu)

Feast your eyes on this Scandinavia scenic shot by Sarah Connors, the EGU Policy Fellow. While visiting Norway, Sarah, took a trip along the world famous fjords and was able to snap the epic beauty of this glacier shaped landscape. To find out more about how she captured the shot and the forces of nature which formed this region, be sure to delve into this Imaggeo on Mondays post.

The August 2015 header images was this stunning image by Kurt Stuewe, which shows the complex geology of the Helvetic Nappes of Switzerland. You can learn more about the tectonic history of The Alps by reading this blog post on the EGU Blogs.

 (A)Rising Stone. Credit: Marcus Herrmann (distributed via imaggeo.egu.eu)

(A)Rising Stone. Credit: Marcus Herrmann (distributed via imaggeo.egu.eu)

The September 2015 header images completes your picks of the best images of 2015. (A)Rising Stone by Marcus Herrmann,  pictures a chain of rocks that are part of the Schrammsteine—a long, rugged group of rocks in the Elbe Sandstone Mountains located in Saxon Switzerland, Germany.

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Geosciences Column: Earthquakes and depleted gas reservoirs; what comes first?

Geosciences Column: Earthquakes and depleted gas reservoirs; what comes first?

An ever growing population means the requirement for resources to fuel our modern lifestyles grows too. Be it in mining, oil/gas extraction or the improvement of renewable technologies, the boundaries of where and how we access resources are constantly being pushed. Previously inaccessible resources become viable prospects as demand increases and our technological know-how advances.

Hand in hand with technological advances, comes an increased awareness of the environment and how it may be affected by the new practices. While the need for more energy is clear, more and more, energy consumers want to understand the impacts of sourcing the energy in the first place. For instance, how seismicity is linked to the extraction of natural resources, namely gas and oil, has become an area of intense research, as well as of media, political and societal focus.

Fracking – the process by which a high pressure mixture of water, sand and chemicals is injected into reservoirs of low porosity and permeability to encourage natural gas trapped within the rock to flow to the surface – makes regular headlines. The debate as to what extent hydraulic fracturing (the formal name for fracking) of rocks, and the subsequent disposal wastewater generated as a by-product, might induce earthquakes is ongoing.

Now, let’s flip the problem, to one which is little studied and even less well understood. What are the risk associated with exploiting conventional oil and gas reservoirs in areas which are earthquake prone? This is exactly the question asked in a recently published paper by Mucciarellie, Dona and Valensise, in the open access journal, Natural Hazards and Earth System Science.

A case study: The Po Plain

In order to explore the problem, the researchers focused on the Po Plain, an alluvial plain which extends for some 45 000 km² (an area roughly half the size of Portugal), over northern Italy. It sits at the foothills of the southern Alps and is bound by the Northern Apennines to the south.

Simplified sketch of northern Italy, centred on the Po Plain and showing the southern Alps and Northern Apennines fold and thrust belts. The location of the largest shocks of the May 2012 Emilia earthquake sequence is shown with red stars. The yellow rectangle outlines the study area (see Fig. 2). Key: SAMF: southern Alps mountain front; SAOA: southern Alps outer arc; GS: Giudicarie system; SVL: Schio-Vicenza line; NAOA: Northern Apennines outer arcs; PTF: pede-Apennines thrust front; MA: Monferrato arc; EA: Emilia arc; FRA: Ferrara-Romagna arc. Modified from Vannoli et al. (2015). Taken from Mucciarelli et al. (2015).

Simplified sketch of northern Italy, centred on the Po Plain and showing the southern Alps and Northern Apennines fold and thrust belts. The location of the largest shocks of the May 2012 Emilia earthquake sequence is shown with red stars. The yellow rectangle outlines the study area Key: SAMF: southern Alps mountain front; SAOA: southern Alps outer arc; GS: Giudicarier system; SVL: Schio-Vicenza line; NAOA: Northern Apennines outer arcs; PTF: pede-Apennines thrust front; MA: Monferrato arc; EA: Emilia arc; FRA: Ferrara-Romagna arc. Modified from Vannoli et al. (2015). Taken from Mucciarelli et al. (2015). Click to enlarge.

Since the 1950s the Po Plain has been systematically exploited for gas and oil. Its structural make-up is similar to many other oil and gas fields world-wide: the reservoir is hosted by growing anticlines (a type of fold which forms an ‘A’ shape) which extend to depths which are seismogenically active. It makes for an ideal case study.

The plain obscures two fold and thrusts belts, – areas of deformed sedimentary rock in which the layers are folded and duplicated by thrust faults – formed due to the proximity to the large orogens. The belts are still contracting, as the European and Adriatic plates continue to collide into one another. The contraction is accommodated by a number of faults in the area which have the potential to generate M 5.5+ earthquakes.

Indeed, the Po Plain was hit by a series of earthquakes and aftershocks in May and June 2012 which ranged in magnitude between 5.9 and 5.1. The costs of the earthquakes were significant, with as many as 100 buildings of historical importance being damaged or destroyed and the tragic loss of 25 lives.

Soon after the earthquakes, speculation start to mount as to whether they might be related to the hydrocarbon exploitation in the area; a notion which came as a surprise to scientists and oil industry professionals alike given that, at the time, studies of induced seismicity in Italy were rare.

Links between hydrocarbon fields and seismicity

Mucciarelli (author of the study) and his co-workers focused on an approximately 150km by 70km section of the Po Plain. They identified a total of 455 drilled wells in the area for the purposes of extraction of hydrocarbons: 190 of which were found to be productive (wells that have been or are producing oil/gas), while 227 were sterile and haven’t been exploited. The geology of the units in the area is generally homogenous and cannot account for the difference in productivity. So, what is the cause?

In a (somewhat simplified) conventional system, oil and gas typically forms in carbon rich shales which act as the source rocks. The hydrocarbons then migrate and accumulate in reservoirs, which are usually formed of permeable and porous rocks such as sandstones. These are capped by a sealing unit of shale or chalk (amongst others), which prevents the hydrocarbons accumulated in porous layers from escaping.

For a reservoir to be productive, the cap rock must be intact and unaffected by fractures or faults which might allow the fluids to escape – something which is not guaranteed in an area prone to earthquakes as is the Po Plain.

Mucciarelli et al. highlight that earthquakes of M 5.5 and above have the potential to cause movement on existing faults leading to new fractures, as well slip on existing faults, thus damaging cap rocks and rendering some reservoirs in the region unproductive as the hydrocarbons would be free to escape. Their argument is strengthened by the finding that a number of the sterile wells they identified cluster around the faults which caused the 2012 earthquakes, while productive wells are found a few kilometres distance away.

What the findings mean for prospective oil and gas fields

Through detailed statistical analysis, the researchers were able to define the characteristics of the productive and sterile areas in greater detail. They found that broader anticlines were less likely to be structurally sound as they were formed by wider, deeper and longer faults which in turn, could be the source of earthquakes. A cluster of unproductive wells would identify such regions during prospecting stages. Conversely, areas of productive wells identify areas unable to generate large earthquakes which would threaten the integrity of the reservoirs. Typically, these would also coincide with smaller anticlines.

The results have implications, not only for the oil and gas industry, but also for underground storage facilities. A CH4 storage facility was being built in an oil depleted reservoir right above the source of one of the May 2012 earthquakes. The research presented in the paper, combined with results from an earlier study by Evans in 2008, show that preference should be given to depleted gas reservoirs over depleted oil and aquifer reservoirs, when designing a gas storage facility in tectonically active areas.

The authors acknowledge that the Po Plain was an ideal case study in which to test their hypothesis. Study of other hydrocarbon producing regions, such as California, North Africa and the Middle East, is now required to fully validate the findings.

References

Evans, D.J.: An appraisal of underground gas storage technologies and incidents, for the development of risk assessment methodology, Prepared by the British Geological Survey for the Health and Safety Executive 2008, RR605 Research Report, 264 ++ tables, figures and appendix, available at: http://www.hse.gov.uk/research/rrpdf/rr605.pdf, 2008.

Mucciarelli, M., Donda, F., and Valensise, G.: Earthquakes and depleted gas reservoirs: which comes first?, Nat. Hazards Earth Syst. Sci., 15, 2201-2208, doi:10.5194/nhess-15-2201-2015, 2015.

Vannoli. P., Burrato, P., and Valensise, G.: The Seismotectonics of the Po Plain (Northern Italy): Tectonic Diversity in a Blind Faulting Domain, Pure Appl. Geophys., 172, 1105-1142, doi:10.1007/s00024-014-0873-0, 2015.

Call for abstracts: The 9th Alexander von Humboldt Conference

The Alexander von Humboldt Conference is part of the EGU’s Topical Conference Series, and will be taking place in Istanbul, Turkey (24 – 28 March 2014). The aim of the meeting is to open a forum on natural hazard events that have a high impact and a large destructive potential, focussing on the Euro-Mediterranean Region in particular.

The theme for the conference can be broken down into nine broad areas:

  • Physical and Probabilistic Approaches to Earthquakes
  • Physics and Characterisation of Tsunamis
  • Monitoring and Risk of Volcanic Hazards
  • Hydro-Meteorological Hazards
  • Other High Impact Mediterranean Hazards (e.g., asteroid impacts, wildfires, terrigenous and submarine landslides, flooding, storm surges)
  • Complexity Analysis Approaches to Natural Hazards
  • Loss Models and Risk Assessment for Natural Catastrophes
  • What constitutes a prediction, what does not? Good Practice when Proposing Predictions of Natural Hazards
  • Communications and Education of Natural Hazard Knowledge  in the Mediterranean Region to Policy Makers, Students and the Public

In addition to the broad scientific topics, the conference will address risk assessment, communicating with the public and policymakers, and what is appropriate good practice when proposing natural hazard “predictions”.

You can submit your abstract to any one of the topics listed above until 31 January 2014. You can  register for the conference here.

Looking out over the Bosphorus from the conference location – great science and a great view! (Credit: Ali Ozgun Konca)

Looking out over the Bosphorus from the conference location – great science and a great view! (Credit: Ali Ozgun Konca)

To find out more about the 9th Alexander von Humboldt Conference: High Impact Natural Hazards Related to the Euro-Mediterranean Region, please see the conference website.

Update (07/01/13): Abstract submission and registration deadline extended to 31 January 2014.

Natural hazards workshop videos are online!

Every year, the EGU host a two day workshop for primary and secondary school teachers during the General Assembly. Geosciences Information For Teachers (GIFT) workshops aim to shorten the time between discovery and textbook, while providing teachers with material that can be used in the classroom.

This year, the workshop was on natural hazards, with scientists from the fields of seismology, volcanology and meteorology and more describing the latest research in their fields and enabling teachers to take a wealth of natural hazards knowledge back to the classroom. Videos of these workshops are now available our YouTube channel, so you can catch up on the latest in natural hazards research and, if you’re a teacher, take it back to your classroom too.

Here’s a short introduction to what’s online:

And here’s the science – from extreme weather to earthquakes and eruptions:

  1. Increase of extreme events in a warming world
  2. Understanding the earthquake generation process – key results and grand challenges
  3. ESA Earth observation programme and its applications to natural hazards
  4. Convergent margins and mega earthquakes
  5. Triggered landslide events – statistics, implications and road network interactions
  6. Space weather – storms from the Sun
  7. Risk assessment of Vesuvius volcano

To find out more about the GIFT programme, please see the GIFT website. You also can watch videos from previous GIFT workshops on EGU TV.