GeoLog

Earth System Dynamics

How extreme events impact Earth’s surface: reports from the 6th EGU Galileo conference

How extreme events impact Earth’s surface: reports from the 6th EGU Galileo conference

Throughout the year, EGU hosts a number of meetings, workshops, and conferences for the geoscience community. While the EGU’s annual General Assembly brings more than 15,000 scientists together under one roof, the EGU Galileo Conferences allows a smaller number of scientists to discuss and debate issues at the forefront of their discipline. In this blog post, the organisers of the 6th Galileo Conference “Perturbations of earth surface dynamics caused by extreme events” reflect on a week of insightful presentations and discussions on rare and catastrophic events.

“How do extreme events perturb Earth surface dynamics?” This question kept us busy during the entire week of the 6th EGU Galileo Conference “Perturbations of earth surface dynamics caused by extreme events”, which took place in Nepal from 13-19 October 2019. As organisers, we had aimed for a slightly unusual conference venue. We kept the nice hotels to a minimum of two nights and took the participants out to the Bhote Kosi for some camping for the remainder of the week to foster discussions and idea exchange.

The Bhote Kosi valley, about four hours’ drive north east of Nepal’s capital city Kathmandu, was heavily impacted by the April 2015 Gorkha earthquake and a subsequent glacier lake outburst flood event in 2016. This valley still today carries the signs of these earlier events in the form of large landslides, unstable slopes, and reworked river beds. As such, the valley serves as an ideal natural laboratory to better understand and quantify how the Earth’s surface responds to such perturbations. The Bhote Kosi had been a basecamp for a number of us studying natural hazards during the multiple field campaigns organised after the Gorkha earthquake, and this conference was a great opportunity to share what we have learned over the past years while directly illustrating the conference topics.

This conference brought together scientists studying a range of rare/extreme events and their broader impacts on Earth surface processes, biogeochemical cycles and human systems. Credit: Monique Fort

What seemed easy in the early days of planning did not come without inevitable doubts as the conference came closer. How do we make sure we have enough tents for everyone, how do we deal with the frequent power cuts, how do we make sure to cater enough local beer to thirsty geoscientists, and what if everyone contracted food poisoning? Fortunately, 60 participants, including ten Nepali colleagues and many early career scientists, blindly followed us without much afterthought and we were off for a busy and promising week.

The talks and posters covered most extreme event triggers: from earthquakes to volcanic eruptions and from wildfires to storms and tsunamis. These presentations provided food for thought for the geomorphologist, the geochemist, and the seismologist alike. Nepal, with the aftermath of the Gorkha earthquake, was well represented in these presentations, but many other parts of the world were covered as well.

Overall, this conference demonstrated the role of extreme events as geomorphic actors, able to shape landscapes and affect biogeochemical cycles. This conference also highlighted the large range of possible geomorphic responses, both in terms of magnitude and spatial extent, suggesting that the question of how these extreme events should be defined (are they large or are they rare events?) should ultimately be left to the investigators. It is however clear that in terms of geomorphic impact, an extreme event should lead to an observable perturbation above a, to-be defined, background variability, and be followed by a recovery period that leads to an old or new steady-state. As such, extreme events are not created equal and future research is needed to understand why such a range of responses are encountered.

Conference attendees had the opportunity to discuss questions and topics at the forefront of their field, from ethics in science to international cooperation. (Credit: Monique Fort) 

Time for discussion also allowed us to debate on the morality of post-disaster scientific work. We concluded that basic research questions related to these events need to be pursued and frequently require immediate mobilisation of scientific equipment and personal. However, this discussion also highlighted the need for clear and transparent international coordination so as to not interfere with relief efforts and avoid being perceived as greedy ambulance-chasing scientists. This important discussion was backed by input from a large Nepali delegation, providing an insight into how they had perceived these questions directly after the recent earthquake. Further discussions focused on the commonalities of different extreme events and the possibility to define a common framework that would allow us to compare the geomorphic impact of an earthquake to that of a storm or a wildfire.

Finally, this conference allowed us to lay the foundation blocks for future international coordination efforts. While the exact contours remain to be defined, all participants emphasised the need to prioritise research questions and resources in the case of rapid response efforts. These efforts require clear coordination with affected countries and funding bodies, but for instance also encourage scientific actors to agree on common publication strategies upfront.

Conference participants tour the Bhote Kosi valley to learn more about how extreme events can shape landscapes. (Credit: Monique Fort) 

In the middle of this busy schedule, a day of field excursion provided a welcome change. From small to large, the Bhote Kosi has it all: boulders, landslides, debris flows etc… Driving up the valley all the way to the Nepal-China border provides a humbling experience of how these idyllic landscapes can be turned into deadly traps in the blink of an eye. With closer scrutiny it becomes obvious that the whole landscape has been shaped by a myriad of these catastrophic events, directly questioning the notion of extremes.

After six days of presentations, posters, and late night discussions, it was time to close this intense, yet educational week. In the end there weren’t too many power cuts, no one got sick, most of us managed to shower with hot water and only a few reported spiders in their tents. In line with the local Nepali customs, the end of the conference was celebrated by inspired dancing until late at night when the first shuttles back to the airport started to take people back to Kathmandu.

By Maarten Lupker, ETH Zürich, Switzerland

60 scientists from all over the world came together for the opportunity to debate and discuss issues related to rare/extreme events and how they impact Earth system dynamics. Credit: Monique Fort

Acknowledgments

This conference was jointly organised with the Nepal Geological Society (NGS), without which this week would have never existed. While many people were involved, we would like to extend special thanks to Basanta Raj Adhikari and Ananta Prasad Gajurel from Tribhuvan University as well as the former president of NGS, Kabi Raj Paudyal and the present one Ram Prasad Ghimire. Bhairab Sitaula also provided invaluable help in all logistical aspects of this conference.

The conference was also co-sponsored by the US National Science Foundation, which provided overseas travel grants. Support from DiGOS & GFZ Potsdam were also greatly appreciated.

The organiser team: Christoff Andermann, Kristen Cook, Sean Gallen, Maarten Lupker, Christian Mohr, Ananta P. Gajurel, Katherine Schide, Lena Märki

May GeoRoundUp: the best of the Earth sciences from around the web

May GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as  unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

In the last couple of weeks of May, the news world was abuzz with the possibility of Donald Trump withdrawing from the Paris Agreement. Though the announcement actually came on June 1st, we’ve chosen to feature it in this round-up as it’s so timely and has dominated headlines throughout May and June.

In withdrawing from the agreement, the United States becomes only one of three countries in rejecting the accord, as this map shows. The implications of the U.S joining Syria and Nicaragua (though, to be clear, their reasons for not signing are hugely different to those which have motivated the U.S withdrawal) in dismissing the landmark agreement have been widely covered in the media.

President Trump’s announcement has drawn widespread condemnation across the financial, political and environmental sectors. Elon Musk, Tesla and SpaceX CEO, was one of many in the business sector to express their criticism of the President’s decision. In response to the announcement, Musk tweeted he was standing down from his duties as adviser to a number of White House councils. While in early May, thirty business CEOs  wrote an open letter published in the Wall Street Journal to express their “strong support for the U.S. remaining in the Paris Climate Agreement.”

In a defiant move, U.S. States (including California, New York and Vermont), cities and business plan to come together to continue to work towards meeting the targets and plans set out by the Paris Agreement. The group, coordinated by former New York City mayor Mark Bloomberg, aims to negotiate with the United Nations to have its contributions accepted to the Agreement alongside those of signatory nations.

“We’re going to do everything America would have done if it had stayed committed,” Bloomberg, said in an interview.

Scientist and learned societies have also been vocal in expressing their criticism of the White House decision. Both Nature and Science collected reactions from researchers around the globe. The EGU, as well as the American Geophysical Union, and many in the broader research community oppose the U.S. President’s decision.

“The EGU is committed to supporting the integrity of its scientific community and the science that it undertakes,” said the EGU’s President, Jonathan Bamber.

For an in-depth round-up of the global reaction take a look at this resource.

What you might have missed

This month’s links you might have missed take us on a journey through the Earth. Let’s start deep in the planet’s interior.

The core generates the Earth’s magnetic field. Periodically, the magnetic field reverses, but what caused it to do so? Well, there are several, competing, ideas which might explain why. Recently, one of them gained a bit more traction. By studying the seismic signals from powerful earthquakes, researchers at the University of Oxford found that regions on top of the Earth’s core sometimes behave like a giant lava lamp. It turns out that blobs of rock periodically rise and fall deep inside our planet. This could affect the magnetic field and cause it to flip.

Meanwhile, at the planet’s surface, the Earth’s outer solid layer (the crust) and upper layer of the molten mantle,  are broken up into a jigsaw of moving plates which pull apart and collide, generating earthquakes, driving volcanic eruptions and raising mountains. But the jury is still out as to when and how plate tectonics started. The Earth is so efficient at recycling and generating new crustal material, through plate tectonics, that only a limited record of very old rocks remains making it very hard to decipher the mystery. A recently published article explores what we know and what yet remains to be discovered when it comes to plate tectonics.

Tectonic plate boundaries. By Jose F. Vigil. USGS [Public domain], distributed by Wikimedia Commons.

Oil, gas, water, metal ores: these are the resources that spring to mind when thinking of commodities which fuel our daily lives. However, there are many others we use regularly, far more often than we realise or care to admit, but which we take for granted. Sand is one of them. In the industrial world it is know as ‘aggregate’ and it is the second most exploited natural resource after water. It is running out. A 2014 United Nations Environment Programme report highlighted that the “mining of sand and gravel greatly exceeds natural renewal rates”.

Links we liked

  • Earth Art takes a whole new meaning when viewed from space. This collection of photographs of natural parks as seen from above is pretty special.
  • This round-up is usually reserved for non-EGU related news stories, but given these interviews with female geoscientists featured in our second most popular tweet of the month, it is definitely worth a share: Conversations on being a women in geoscience – perspectives on what being a female in the Earth sciences.
  • We’ve shared these previously, but they are so great, we thought we’d highlight them again! Jill Pelto, a scientist studying the Antarctic Ice Sheet and an artist, uses data in her watercolous to communicate information about extreme environmental issues to a broad audience.

The EGU story

Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate. A new study published in Earth System Dynamics, an EGU open access journal, shows that land height could be a “game changer” when it comes to explaining why temperatures are rising at such different rates in the two regions. Read the full press release for all the details, or check out the brief explainer video, which you can also watch on our YouTube channel.

 

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Read all about it! The latest on EGU journals

The last month has been a big one for the EGU’s publications, with a new journal in the pipeline, another adopting interactive peer review and a new addition to Web of Science. Here’s the latest…

Soil

Say hello to SOIL

We will be launching a new interactive, open access journal at the EGU 2014 General Assembly. SOIL is dedicated to the publication and discussion of high-quality research in the field of soil system sciences. It will open for submissions in May 2014, following the journal’s official launch at EGU 2014.

Find out more about SOIL on the EGU website and take sneak peek at SOIL over at www.soil-journal.net.

 

NPG_cover

 

Nonlinear Processes in Geophysics becomes interactive
Nonlinear Processes in Geophysics (NPG), is transitioning from an open access journal with a traditional review process into an interactive open access journal that uses public peer-review and interactive public discussion. Find out more about this new peer review process here.

 

 

ESD cover

Earth System Dynamics indexed in ISI Web of Science

Last but not least, one of our open access journals, Earth System Dynamics (ESD), is to be included in the Web of Science/ISI listings, following the com­pletion of their assessment of the quality, characteristics, and flow of papers published in the journal since its launch in 2010! This is terrific news and highlights the tremendous work of the editorial board and the scientific community in submitting so many excellent articles to ESD. Over the next few months all ESD papers will be added to the listings.

Stay up-to-date with EGU news at www.egu.eu/news/announcements.