GeoLog

coral bleaching

June GeoRoundUp: the best of the Earth sciences from around the web

June GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

With June being the month when the world’s oceans are celebrated with World Ocean Day (8th June) and the month when the UN’s Ocean Conference took place, it seemed apt to dedicate our major story to this precious, diverse and remote landscape.

In fact, so remote and inaccessible are vast swathes of our oceans, that 95% of them are unseen (or unvisited) by human eyes. Despite their inaccessibility, humans are hugely reliant on the oceans.  According to The World Bank, the livelihoods of approximately 10 to 12% of the global population depends on healthy oceans and more than 90%of those employed by capture fisheries are working in small-scale operations in developing countries. Not only that, but the oceans trap vast amounts of heat from the atmosphere, limiting global temperature rise.

Yet we take this valuable and beautiful resource for granted.

As greenhouse gas emissions rise, the oceans must absorb more and more heat. The ocean is warmer today than it has been since recordkeeping began in 1880. Over the past two decades this has resulted in a significant change in the composition of the upper layer of water in our oceans. Research published this month confirms that ocean temperatures are rising at an alarming rate, with dire consequences.

Corals are highly sensitive to changes in ocean temperatures. The 2015 to 2016 El Niño was particularly powerful. As its effects faded, ocean temperatures in the Pacific, Atlantic and Indian oceans remained high, meaning 70 percent of corals were exposed to conditions that can cause bleaching. Almost all of the 29 coral reefs on the U.N. World Heritage list have now been damaged by bleaching.

This month, the National Oceanic and Atmospheric Administration (NOAA) declared that bleaching was subsiding for the first time in three years. Some of the affected corals are expected to take 10 to 15 years to recover, in stress-free conditions. But as global and ocean temperatures continue to rise, corals are being pushed closer to their limits.

Warmer ocean temperatures are also causing fish to travel to cooler waters, affecting the livelihoods of fishermen who depend on their daily catch to keep families afloat and changing marine ecosystems forever. And early this month, millions of sea-pickles – a mysterious warm water loving sea creature- washed up along the western coast of the U.S, from Oregon to Alaska. Though scientists aren’t quite sure what caused the bloom, speculation is focused on warming water temperatures.

It is not only warming waters which are threatening the world’s oceans. Our thirst for convenience means a million plastic bottles are bought around the world every minute. Campaigners believe that the environmental crisis brought about by the demand for disposable plastic products will soon rival climate change.

In 2015 researchers estimated that 5-13 million tonnes of plastics flow into the world’s oceans annually, much coming from developing Asian nations where waste management practices are poor and the culture for recycling is limited. To tackle the problem, China, Thailand, Indonesia and the Philippines vouched to try and keep more plastics out of ocean waters. And, with a plastic bottle taking up to 450 years to break down completely, what happens to it if you drop it in the ocean? Some of it, will likely find it’s way to the Arctic. Indeed, recent research suggests that there are roughly 300 billion pieces of floating plastic in the polar ocean alone.

A bottle dropped in the water off the coast of China is likely be carried eastward by the north Pacific gyre and end up a few hundred miles off the coast of the US. Photograph: Graphic. Credit: If you drop plastic in the ocean, where does it end up? The Guardian. Original Source: Plastic Adrift by oceanographer Erik van Sebille. Click to run.

And it’s not only the ocean waters that are feeling the heat. As the demand for resources increases, the need to find them does too. The sea floor is a treasure trove of mineral and geological resources, but deep-sea mining is not without environmental concerns. Despite the ethical unease, nations are rushing to buy up swathes of the ocean floor to ensure their right to mine them in the future. But to realise these deep-water mining dreams, advanced technological solutions are needed, such as the remote-controlled robots Nautilus Minerals will use to exploit the Bismarck Sea, off the coast of Papua New Guinea.

What you might have missed

Lightning reportedly ignited a deadly wildfire in Portugal, seen here by ESA’s Proba-V satellite on 18 June.

“On June 17, 2017, lightning reportedly ignited a deadly wildfire that spread across the mountainous areas of Pedrógão Grande—a municipality in central Portugal located about 160 kilometers (100 miles) northeast of Lisbon”, reported NASA – National Aeronautics and Space Administration. The death toll stands at 62 people (as reported by BBC News). The fires were seen from space by satellites of both NASA and ESA – European Space Agency satellites.

Large wildfires are also becoming increasing common and severe in boreal forests around the world. Natural-color images captured by NASA satellites on June 23rd, shows wildfires raging near Lake Baikal and the Angara River in Siberia. At the same time, a new study has found a link between lightning storms and boreal wildfires, with lightning strikes thought to be behind massive fire years in Alaska and northern Canada. This infographic further explores the link between wildfires triggered both by lightning and human activities.

Meanwhile, in the world’s southernmost continent the crack on the Larsen C ice-shelf continues its inexorable journey across the ice. The rift is set to create on of the largest iceberg ever recorded. Now plunged in the darkness of the Antarctic winter, obtaining images of the crack’s progress is becoming a little tricker. NASA used the Thermal Infrared Sensor (TIRS) on Landsat 8 to capture a false-color image of the crack. The new data, which shows an acceleration of the speed at which the crack is advancing, has lead scientists to believe that calving of the iceberg to the Weddell Sea is imminent.

Links we liked

The EGU story

This month saw the launch of two new division blogs over on the EGU Blogs: The Solar-Terrestrial Sciences and the Geodynamics Division Blogs. The EGU scientific divisions blogs share division-specific news, events, and activities, as well as updates on the latest research in their field.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Geosciences Column: How El Niño triggered Indonesia corals die-off

Geosciences Column: How El Niño triggered Indonesia corals die-off

In the glistening waters of Indonesia, shallow corals – the rain forests of the sea – teem with life.  Or at least they did once. Towards the end of 2015 the corals started to die, leaving a bleak landscape behind. An international team of researchers investigated the causes of the die-off. Their findings, published recently in the EGU’s open access journal, Biogeosciences, are rather surprising.

Globally, corals face tough times. Increasing ocean-water temperatures (driven by a warming climate) are disrupting the symbiotic relationship between corals and the algae that live on (and in) them.

The algae, known as zooxanthellae, provide a food source for corals and give them their colour. Changing water temperatures and/or levels, the presence of contaminants or overexposure to sunlight, put corals under stress, forcing the algae to leave. If that happens, the corals turn white – they become bleached – and are highly susceptible to disease and death.

Triggered by the 2015-2016 El Niño, water temperatures in many coral reef regions across the globe have risen, causing the National Oceanic and Atmospheric Administration (NOAA) to declare the longest and most widespread coral bleaching event in recorded history. Now into its third year, the mass bleaching event is anticipated to cause major coral die-off in Australia’s Great Barrier Reef for the second consecutive year.

The team of researchers studying the Indonesian corals found that, unlike most corals globally, it’s not rising water temperatures which caused the recent die-off, but rather decreasing sea level.

While conducting a census of coral biodiversity in the Bunaken National Park, located in the northwest tip of Sulawesi (Indonesia), in late February 2016, the researchers noticed widespread occurrences of dead massive corals. Similar surveys, carried out in the springs of 2014 and 2015 revealed the corals to be alive and thriving.

In 2016, all the dying corals were found to have a sharp horizontal limit above which dead tissue was present and below which the coral was, seemingly, healthy. Up to 30% of the reef was affected by some degree of die-off.

Bunaken reef flats. (a)Close-up of one Heliopora coerula colony with clear tissue mortality on the upper part of the colonies; (b)same for a Porites lutea colony; (c) reef flat Porites colonies observed at low spring tide in May 2014. Even partially above water a few hours per month in similar conditions, the entire colonies were alive. (d) A living Heliopora coerula (blue coral) community in 2015 in a keep-up position relative to mean low sea level, with almost all the space occupied by corals. In that case, a 15 cm sea level fall will impact most of the reef flat. (e–h) Before–after comparison of coral status for colonies visible in (c). In (e), healthy Poritea lutea (yellow and pink massive corals) reef flat colonies in May 2014, observed at low spring tide. The upper part of colonies is above water, yet healthy; (f) same colonies in February 2016. The white lines visualize tissue mortality limit. Large Porites colonies (P1, P2) at low tide levels in 2014 are affected, while lower colonies (P3) are not. (g) P1 colony in 2014. (h) Viewed from another angle, the P1 colony in February 2016. (i) Reef flat community with scattered Heliopora colonies in February 2016, with tissue mortality and algal turf overgrowth. Taken from E. E. Ampou et al. 2016.

The confinement of the dead tissue to the tops and flanks of the corals, lead the scientists to think that the deaths must be linked to variations in sea level rather than temperature, which would affect the organisms ubiquitously. To confirm the theory the researchers had to establish that there had indeed been fluctuations in sea level across the region between the springs of 2015 and 2016.

To do so they consulted data from regional tide-gauges. Though not located exactly on Bunaken, they provided a good first-order measure of sea levels over the period of time in question. To bolster their results, the team also used sea level height data acquired by satellites, known as altimetry data, which had sampling points just off Bunaken Island. When compared, the sea level data acquired by the tidal gauges and satellites correlated well.

Sea-level data from the Bitung (east North Sulawesi) tide-gauge, referenced against Bako GPS station. On top, sea level anomalies measured by the Bitung tide-gauge station (low-quality data), and overlaid on altimetry ADT anomaly data for the 1993– 2016 period. Note the gaps in the tide-gauge time series. Middle: Bitung tide-gauge sea level variations (high-quality data, shown here from 1986 till early 2015) with daily mean and daily lowest values. Bottom, a close-up for the 2008–2015 period. Taken from E. E. Ampou et al. 2016.

The data showed that prior to the 2015-2016 El Niño, fluctuations in sea levels could be attributed to the normal ebb and flow of the tides. Crucially, between August and September 2015, they also showed a sharp decrease in sea level: in the region of 15cm (compared to the 1993-2016 mean). Though short-lived (probably a few weeks only), the period was long enough that the corals sustain tissue damage due to exposure to excessive UV light and air.

NOAA provides real-time Sea Surface Temperatures which identify areas at risk for coral bleaching. The Bunaken region was only put on alert in June 2016, long after the coral die-off started, therefore supporting the crucial role sea level fall played in coral mortality in Indonesia.

The link between falling sea level and El Niño events is not limited to Indonesia and the 2015-2016 event. When the researchers studied Absolute Dynamic Topography (ADT) data, which provides a measure of how sea level has change from 1992 to 2016, they found sea level falls matched with El Niño years.

The results of the study highlight that while all eyes are focused on the consequences of rising ocean temperatures and levels triggered by El Niño events, falling sea levels (also triggered by El Niño) could be having a, largely unquantified, harmful effect on corals globally.

By Laura Roberts Artal, EGU Communications Officer

References and resources

Ampou, E. E., Johan, O., Menkes, C. E., Niño, F., Birol, F., Ouillon, S., and Andréfouët, S.: Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall, Biogeosciences, 14, 817-826, doi:10.5194/bg-14-817-2017, 2017

Varotsos, C. A., Tzanis, C. G., and Sarlis, N. V.: On the progress of the 2015–2016 El Niño event, Atmos. Chem. Phys., 16, 2007-2011, doi:10.5194/acp-16-2007-2016, 2016.

What are El Niño and La Niña? – a video explainer by NOAA

Coral Reef Watch Satellite Monitoring by NOAA

Global sea level time series – global estimates of sea level rise based on measurements from satellite radar altimeters (NOAA/NESDIS/STAR, Laboratory for Satellite Altimetry)

El Niño prolongs longest global coral bleaching event – a NOAA News item

NOAA declares third ever global coral bleaching event – a NOAA active weather alert (Oct. 2015)

The 3rd Global Coral Bleaching Event – 2014/2017 – free resources for media and educators

What is coral bleaching? – an infographic by NOAA
The ENSO (El Niño–Southern Oscillation) Blog by Climate.gov (a NOAA resource)