GeoLog

biogeochemistry

Imaggeo on Mondays: An expedition to better understand Antarctic soils

Imaggeo on Mondays: An expedition to better understand Antarctic soils

A dramatic evening sky puts the frame to a photo taken during the Brazilian Antarctic expedition to James Ross Island in 2016. Brazilian palaeontologists and soil scientists together with German soil scientists spent over 40 days on the island to search for fossils and sample soils at various locations of the northern part of the island.

The island was named after Sir James Clark Ross who led the British expedition in 1842, which first charted locations at the eastern part of the island. James Ross Island is part of Graham Land, the northern portion of the Antarctic Peninsula, separated from South America by the stormy Drake sea passage.

Map of the Antarctic Peninsula featuring the James Ross Archipelago (Credit: The Scientific Committee on Antarctic Research, Antarctic Digital Database Map Viewer)

This photo was taken in the northern Ulu Peninsula, which is the northernmost part of the relatively large James Ross Island and the largest ice-free area in the Antarctic Peninsula region. The island’s characteristic appearance is formed by Late Neogene volcanic rocks (3-7 million years old) over fossil rich Late Cretaceous sandstones (66-120 million years old).

In the photo we are looking from a higher marine terrace at the Santa Martha Cove, the ‘home’ to the 2016 Brazilian Antarctic expedition, towards the steep cliffs of Lachman Crags, a characteristic mesa formed by Late Neogene lava flows. The Lachman Crags mesa, the Spanish word for tablelands, dominates the landscape of the northern part of the Ulu Peninsula. Above the cliffs visible in the photo, a glacier covered plateau stretches to the Northwest.

The marine terrace on which the tent is standing is comprised of a flat area that has been ice-free for approximately 6000 years and thus makes for a great model system to study soil development after glacial retreat. The ground is composed of a mixture of volcanic rocks and Cretaceous sandstones rich in all sorts of fossils, from fossilised wood to shark teeth, ammonites and reptile bones.

The strong winds that can start in Antarctica from one moment to the other and the very low precipitation led to the characteristic desert pavement, with stones sorted in a flat arrangement on top of the fine textured, deeply weathered permafrost soils. Although these soils host a surprisingly high number of microorganisms, most terrestrial life is restricted to wetter areas surrounding fresh water lakes and melt water streams. Thus lakes and snow meltwater-fed areas make for higher primary production of algae and mosses, fostering biodiversity and soil development by organic matter input.

As there are no larger bird rookeries on James Ross Island the only way sea-derived nutrients reach the Ulu Peninsula is by a rather grim feature:  dead seal carcasses that lie distributed across the lowlands (< 150 m asl) of the Ulu Peninsula. Carcasses fertilise the soils in their direct vicinity while slowly decomposing over decades, thus feeding small patches of lichens and mosses within the barren cold arid desert. The region is thus an illustration of the harsh Antarctic environment where even Weddell seals, animals that are well adapted for the living in dense pack ice during the polar night, die when losing track on land on the way to the water.

By Carsten Müller, Technical University of Munich Chair of Soil Science, Germany

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Penguins – a biogeochemical link between sea and land

Imaggeo on Mondays: Penguins – a biogeochemical link between sea and land

A couple of Chinstrap penguins (Pygoscelis antarctica) at their nesting site on Deception Island, maritime Antarctica. Sea birds contribute importantly to biogeochemical cycles in coastal ecosystems and on islands. Feeding on the marine food chain and nesting on land, they carry large amounts of marine nutrients into terrestrial ecosystems. This might be of particular importance for the nitrogen (N) cycle of terrestrial ecosystems in the antarctic. In the form of ammonia, marine derived N can travel far inland with the wind, and perhaps represent an important nutrient source for the growth of mosses.

Description by Daniel Wasner, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Life on bare lava

Life on bare lava

There are plenty of hostile habitats across the globe but some flora and fauna species are resourceful enough to adapt and make extreme environments their home. From heat-loving ants of the Sahara to microbes living in the light-deprived ocean depths, through to beatles who brave the bitterly cold Alaskan winter, there are numerous examples of plants, animals and bugs who strive in environments often considered too challenging to harbour life. In today’s post, brought to you by geomorphologist Katja Laute, we feature Vinagrerilla roja, a plant species adept at making difficult terrains its home.

Vinagrerilla roja (Rumex vesicarius) / the Canary Island bladderdock is one of the most successful endemic plants for colonizing new territory in arid and volcanic areas. The photo was taken on the crater rim of the volcano Montana Bermeja (157 m asl.), located at the northernmost edge of the volcanic island La Graciosa. The island was formed by the Canary hotspot and is today part of the protected Chinijo Archipelago Natural Park which shelters endemic and highly endangered species of the Canary Islands.

The volcano Montana Bermeja is composed of red lapilli (pea to walnut-sized fragments ejected during an eruption) which seems to impede any kind of life. But as the photo shows, the bladderdock is actively growing in this apparently hostile environment. That plant life emerges from such a barren and rough volcanic environment seems almost impossible.

Only very few pioneer species succeed and manage to survive in such harsh environments with little to no soil and under an almost desertic climate. Being located on the northern side of the crater rim enables the bladderdock to capture moisture out of the reoccurring Atlantic winds. As these pioneer species grow, their dead leaves and roots will enrich the soil with organic content providing the base for a chain of ecological succession.

By Katja Laute, researcher at IUEM, Brest, France

If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: The invaluable role of soil dwellers

Imaggeo on Mondays: The invaluable role of soil dwellers

That soils are vital to secure our future supplies of water, food, as well as aiding adaptation to climate change and sustaining the planet’s biosphere is a subject we’ve featured on the blog as recently as the summer. That’s because never have humans been more out of touch with the vital importance of this natural resource.

Inhabiting among soil particles thrives an even less familiar, but equally important, ecosystem: rhizosphere microbes. Despite their tiny size these microorganisms play an important role in large-scale soil processes. This is particularly true in forested areas where there are strong interactions between plants (including trees, which we’ll focus on in this post), rhizosphere microbes and soil.

Let’s zoom in to the rhizosphere: the area which intimately surrounds plat roots and is home to soil microbes and minerals. It is also a hotbed of biogeochemical of activity. Minerals are weathered and plant and animal residues are transformed into soil organic matter (SOM), all that happening in a small, temporally transient zone of steep geochemical gradients.

The processes involved are complex and more and more, below-ground microbial communities face major challenges brought about by climate change. Higher temperatures and altered precipitation patterns mean the ecosystems are under threat from increased droughts and wild fire activity.

The problem is that scientists don’t fully understand how soil microbiomes are affected by these disturbances. How are their function and dynamics affected by the changing environment?

Let’s zoom out and head to the Central Cascades, USA; land of peaks as high as 4,392 m (Mt. Rainier), glacial-carved lakes and mountain valleys. Most of the range’s lower and middle elevations are covered with temperate coniferous forest (those made up of trees which produce cones and needles). In forests, it’s the rhizosphere microbes, fungi and soils which control mineral weathering and the processes which dictate the formation of SOM. This makes the forests of the Central Cascades the perfect laboratory to try and unravel some of the questions surrounding how soil microbiomes might be affected by a changing climate.

To answer this difficult question, electron microscopy is being used as a research tool for imaging and analyses of processes in environmental microbiology and biogeochemistry. Today’s imaggeo on Monday’s image was acquired by helium ion microscopy (Orion, Zeiss) at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory in Richland, WA. The image shows a few members of a diverse microbial community in ponderosa pine forest soil ecosystem in the Washington State portion of Central Cascades, USA.

By Laura Roberts, EGU Communications Officer and Alice C. Dohnalkova, senior research scientist at the Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.