GeoLog

Space and Planetary Sciences

August GeoRoundUp: the best of the Earth sciences from around the web

August GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major story

The south Indian state of Kerala has suffered unusually heavy monsoon rainfall this month, triggering the worst flooding the state has seen in more than a century.

Officials have reported nearly 500 deaths, while more than one million people have been evacuated to over 4,000 relief camps.

Between 1 and 19 August, the region received 758.6 milimetres of rain, 2.6 times the average for that season. In just two days (15-16 August), Kerala sustained around 270 milimetres of rainfall, the same amount of rainfall that the entire state receives in one month typically, said Roxy Mathew Koll, a climate scientist at the Indian Institute of Tropical Meteorology and the National Oceanic and Atmospheric Administration, to BBC News.

Due to the heavy downpours, rivers have overflowed, water from several dams has been released, and lethal landslides have swept away rural villages.

“Officials estimated about 6,000 miles (10,000km) of roads had been submerged or buried by landslides,” reported the Guardian. “Communications networks were also faltering, officials said, making rescue efforts harder to coordinate.”

Experts report that the event’s severity stems from many factors coming together.

For instance, a recent study led by Koll has shown that in the past 50-60 years, monsoon winds have weakened, delivering less rain on average in India. However, the distribution of rainfall is uneven, with long dry spells punctuated by heavy rainfall events. Koll’s research suggests that central India has experienced a threefold rise in the number of widespread extreme rain events during 1950-2012. In short, it doesn’t rain as often; but when it rains, it pours.

Scientists also say that increased development in the region had exacerbated the monsoon’s impact.

For example, usually when storms release heavy rainfall, much of that water is absorbed or slowed down by vegetation, soil, and other natural obstacles. However, scientists point out that “over the past 40 years Kerala has lost nearly half its forest cover, an area of 9,000 km², just under the size of Greater London, while the state’s urban areas keep growing. This means that less rainfall is being intercepted, and more water is rapidly running into overflowing streams and rivers.”

To make matters worse, increased development can also change how effectively rivers handle heavy downpours. For instance, canals and bridges can make rivers more narrow and can create sediment build-up, which slows water flow. “When there is a sudden downpour, there is not enough space for the water so it floods the surrounding area,” explains Nature.

Some experts have added that badly-timed water management practices are also partly to blame for the flood’s devastation on local communities.

“A contributing factor is that after the heavy rain, authorities began to release water from several of the state’s 44 dams, where reservoirs were close to overflowing. The neighbouring state of Tamil Nadu also purged water from its over-filled Mullaperiyar dam, which wreaked yet more havoc downstream in Kerala,” Nature adds.

While floodwaters began to recede in late August, rescue teams are still searching submerged neighborhoods to deliver aid and evacuate survivors.

What you might have missed

Water on moon confirmed

Recent research published this month suggest that there is almost certainly frozen water on the moon’s surface.

The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right). Blue represents the ice locations, plotted over an image of the lunar surface, where the gray scale corresponds to surface temperature (darker representing colder areas and lighter shades indicating warmer zones). (Credit: NASA)

“Previous observations indirectly found possible signs of surface ice at the lunar south pole, but these could have been explained by other phenomena, such as unusually reflective lunar soil,” NASA officials said in a published statement.

Now, scientists involved with the new study claim that they’ve found definitive evidence that ice is located within craters on the moon’s north and south poles.

During daylight hours, the moon’s surface can be brutally hot, often reaching temperatures as high as 100 degrees Celsius. However, due to the moon’s axial tilt, some parts of the lunar poles don’t receive sunlight. Scientists estimate that some craters situated within these permanently dark polar regions are cold enough to sustain pockets of water-ice.

Because the moon’s poles are so dark, scientists have had a hard time studying the lunar craters. But Shuai Li, a planetary researcher at the University of Hawaii at Manoa and lead author of the study, and his colleagues tried a creative way to shed some light on shadowed craters, using data collected from India’s Chandrayaan-1 lunar probe ten years ago.

“They peered into dark craters using traces of sunlight that had bounced off crater walls,” reports the New York Times. “They analyzed the spectral data to find places where three specific wavelengths of near-infrared light were absorbed, indicating ice water.”

As of now, the researchers still aren’t sure how much ice there is, or how it found its way to the moon’s poles. But if enough accessible ice exists close to the lunar surface, the water could be used as a resource for future missions to the moon, from a source of drinking water to rocket fuel.

Mapping Earth’s winds from above

Also this month, scientists from the European Space Agency launched a satellite that will profile the world’s winds, in hopes that the data will greatly improve weather forecasts and provide insight for long-term climate research. The satellite, named Aeolus after the celestial keeper of the winds in Greek mythology, was sent to orbit from French Guiana on Wednesday 22 August.

The rocket was due to lift off on Tuesday, but the launch was postponed – ironically – due to high altitude winds,” reports BBC News.

Aeolus profiling the word’s winds (Credit: ESA)

Equipped with a Doppler wind lidar, Aeolus will send powerful laser pulses down to Earth’s atmosphere and measure how air molecules and other particles in the wind scatter the light beam.

Researchers expect that wind data from Aeolus will greatly improve current efforts to forecast storms, especially their severity over time. While scientists have many ways to measure wind behavior, current methods are unable to capture wind movement from all corners of the Earth. Aeolus will be the first mission to monitor winds across the entire globe.

Using data collected by Aeolus, experts estimate that the quality of forecasts will increase by up to 15% within the tropics, and 2-4% outside of the tropics.

“If we improve forecasts by 2%, the value for society is many billions of dollars,” said Lars Isaksen, a meteorologist at the European Centre for Medium-Range Weather Forecasts (ECMWF), to Nature.


Learn how Earth’s wind is generated and why we need to measure it. (Credit: ESA

Links we liked

The EGU story

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance! Help shape the scientific programme of the 2019 General Assembly.

Before the end of today (6 September), you can suggest:

This month we released two press releases from research published in our open access journals. Take a look at them below:

Landslides triggered by human activity on the rise

More than 50,000 people were killed by landslides around the world between 2004 and 2016, according to a new study by researchers at UK’s Sheffield University. The team, who compiled data on over 4800 fatal landslides during the 13-year period, also revealed for the first time that landslides resulting from human activity have increased over time. The research is published today in the European Geosciences Union journal Natural Hazards and Earth System Sciences.

Deadline for climate action – Act strongly before 2035 to keep warming below 2°C

If governments don’t act decisively by 2035 to fight climate change, humanity could cross a point of no return after which limiting global warming below 2°C in 2100 will be unlikely, according to a new study by scientists in the UK and the Netherlands. The research also shows the deadline to limit warming to 1.5°C has already passed, unless radical climate action is taken. The study is published today in the European Geosciences Union journal Earth System Dynamics.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

July GeoRoundUp: the best of the Earth sciences from around the web

July GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major stories  

Signs of water 55 million kilometres away

Last week scientists announced that they have found signs of existing water on Mars, offering new hope to the possibility of uncovering life on the Red Planet’s subsurface.  

Radar observations made by the European Space Agency’s Mars Express satellite, suggest that a liquid lake is buried 1.5 kilometres beneath an ice cap situated near the south pole of Mars. Scientists think that this body of water is likely a few metres deep and 20 kilometres across, “nearly three times larger than the island of Manhattan,” reported Scientific American.

A schematic of how scientists used radar to find what they interpret to be liquid water beneath the surface of Mars. (Credit: ESA)

For the last 12 years the Mars Express satellite has been taking measurements of Mars by sending beams of radar pulses into the planet’s immediate interior. As these waves bounce back, the brightness of the reflection gives information on the material lying beneath Mars’ surface.

The researchers involved came across this discovery while analysing three years worth of data collected by the spacecraft.

“The bluer the colors, the brighter the radar reflection from the material it bounced off. The blue triangle outlined in black in the middle is the purported lake,” reported Science News.

Previous observations, made by NASA’s Curiosity rover for example, have found lake beds on the planet’s exterior, signifying that water may have flowed on Mars in the past. However, if this new finding is confirmed, it would be the first discovery of an existing stable body of water, one of the conditions believed to be necessary for life to thrive.

Context map: NASA/Viking; THEMIS background: NASA/JPL-Caltech/Arizona State University; MARSIS data: ESA/NASA/JPL/ASI/Univ. Rome; R. Orosei et al 2018 (distributed via ESA)

“We are not closer to actually detecting life,” said Manish Patel from the Open University to BBC News, “but what this finding does is give us the location of where to look on Mars. It is like a treasure map – except in this case, there will be lots of ‘X’s marking the spots.”

In their study, published in Science last week, the team remarked, “there is no reason to conclude that the presence of subsurface water on Mars is limited to a single location.”

Northern hemisphere feels the heat

In other news, the two words best describing the northern hemisphere this summer could very well “hot” and “dry,” as a series of heat waves have taken hold of several regions across Europe, Asia, North America and northern Africa. Many countries this month, including Japan, Algeria and Canada, have even experienced record-breaking temperatures.

A look at how this year’s heatwave has changed the colour of our vegetation in just one month (Credit: ESA

For some places, above average temperatures and dry conditions have helped fuel devastating wildfires. More than 50 wildfires have swept through Scandinavian forests this summer, many well within the Arctic Circle, causing Sweden to request emergency aid from nearby countries.

Smoke rises from a wildfire in Enskogen. (Credit: Swedish Environmental Protection Agency/Maja Suslin)

A major wildfire also ignited near Athens, Greece this month, resulting in more than 85 death, with dozens still missing. While Greek officials claim that there are “serious indications” that the flames were brought upon by arson, they also note that the region’s climate conditions were extreme.

To many scientists, this onslaught of hot and dry conditions is a taste of what may soon become the norm.  Of course, these conditions (in Europe, for example) are partly due to weather. “The jet stream – the west-to-east winds that play a big role in determining Europe’s weather – has been further north than usual for about two months,” reports the Guardian, leading to sweltering conditions in the UK and much of Europe, while leaving Iceland cool and stormy.  

However, scientists say that heatwaves in the northern hemisphere are very much linked to global warming. “There’s no question human influence on climate is playing a huge role in this heatwave,” said Myles Allen, a climate scientist at the University of Oxford, to the Guardian in the same article.

A recent assessment on the ongoing heat wave in Europe reports that these conditions are more likely to occur due to climate change. “The findings suggest that rising global temperatures have increased the likelihood of such hot temperatures by five times in Denmark, three times in the Netherlands and two times in Ireland,” said Carbon Brief.

What you might have missed

Geologists have given a name to Earth’s most recent chapter: Meghalayan Age. The announcement was made earlier this month when the International Union of Geological Sciences updated the International Chronostratigraphic Chart, which classifies Earth’s geologic time scale. The new update has divided the Holocene Epoch (the current time series which began 11,700 years ago, when the Earth was exiting its last ice age) into three stages: the Greenlandian, the Northgrippian, and then Meghalayan.

The Meghalayan Age represents the time between now and 4,200 years ago, when a mega-drought led to the collapse of many civilisations across the world. The middle phase, Northgrippian (from 8,300 years ago to 4,200 years ago), is marked by an sudden cooling event brought on by massive glacial melt in Canada that affected ocean currents. Finally the oldest phase, Greenlandian, (from 11,700 years ago to 8,300 years ago) is marked by the end of the last ice age.

The recent update has created some unrest in the geosciences community. “There is still an active debate about assigning a new geologic slice of time to reflect specifically the influence of humans on the planet,” reported BBC News. Some scientists say that the new divisions conflict with the current work being done on proposing a new epoch classification, famously called the ‘Anthropocene,’ which would be marked by the beginning on significant human impact on Earth’s geology and ecosystems.

Links we liked

The EGU story

This month we released not one but two press releases from research published in our open access journals. The findings from both studies have important societal implications. Take a look at them below.

New study: oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”

The Baltic Sea is home to some of the world’s largest dead zones, areas of oxygen-starved waters where most marine animals can’t survive. But while parts of this sea have long suffered from low oxygen levels, a new study by a team in Finland and Germany shows that oxygen loss in coastal areas over the past century is unprecedented in the last 1500 years. The research was published in the European Geosciences Union journal Biogeosciences.

New study puts a figure on sea-level rise following Antarctic ice shelves’ collapse

An international team of scientists has shown how much sea level would rise if Larsen C and George VI, two Antarctic ice shelves at risk of collapse, were to break up. While Larsen C has received much attention due to the break-away of a trillion-tonne iceberg from it last summer, its collapse would contribute only a few millimetres to sea-level rise. The break-up of the smaller George VI Ice Shelf would have a much larger impact. The research was published in the European Geosciences Union journal The Cryosphere.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

NASA’s Juno mission reveals Jupiter’s magnetic field greatly differs from Earth’s

NASA’s Juno mission reveals Jupiter’s magnetic field greatly differs from Earth’s

NASA scientists have revealed surprising new information about Jupiter’s magnetic field from data gathered by their space probe, Juno.

Unlike earth’s magnetic field, which is symmetrical in the North and South Poles, Jupiter’s magnetic field has startlingly different magnetic signatures at the two poles.

The information has been collected as part of the Juno program, NASA’s latest mission to unravel the mysteries of the biggest planet in our solar system. The solar-powered spacecraft is made of three 8.5 metre-long solar panels angled around a central body. The probe (pictured above) cartwheels through space, travelling at speeds up to 250,000 kilometres per hour.

Measurements taken by a magnetometer mounted on the spacecraft have allowed a stunning new insight into the planet’s gigantic magnetic field. They reveal the field lines’ pathways vary greatly from the traditional ‘bar magnet’ magnetic field produced by earth.

Jupiter’s magnetic field is enormous. if magnetic radiation were visible to the naked eye, from earth, Jupiter’s magnetic field would appear bigger than the moon. Credit: NASA/JPL/SwRI

The Earth’s magnetic field is generated by the movement of fluid in its inner core called a dynamo. The dynamo produces a positive radiomagnetic field that comes out of one hemisphere and a symmetrical negative field that goes into the other.

The interior of Jupiter on the other hand, is quite different from Earth’s. The planet is made up almost entirely of hydrogen gas, meaning the whole planet is essentially a ball of moving fluid. The result is a totally unique magnetic picture. While the south pole has a negative magnetic field similar to Earth’s, the northern hemisphere is bizarrely irregular, comprised of a series of positive magnetic anomalies that look nothing like any magnetic field seen before.

“The northern hemisphere has a lot of positive flux in the northern mid latitude. It’s also the site of a lot of anomalies,” explains Juno Deputy Principal Investigator, Jack Connerney, who spoke at a press conference at the EGU General Assembly in April. “There is an extraordinary hemisphere asymmetry to the magnetic field [which] was totally unexpected.”

NASA have produced a video that illustrates the unusual magnetism, with the red spots indicating a positive magnetic field and the blue a negative field:

Before its launch in 2016, Juno was programmed to conduct 34 elliptical ‘science’ orbits, passing 4,200 kilometres above Jupiter’s atmosphere at its closest point. When all the orbits are complete, the spacecraft will undertake a final deorbit phase before impacting into Jupiter in February 2020.

So far Juno has achieved eleven science orbits, and the team analysing the data hope to learn more as it completes more passes. “In the remaining orbits we will get a finer resolution of the magnetic field, which will help us understand the dynamo and how deep the magnetic field forms” explains Scott Bolton, Principal Investigator of the mission.

The researchers’ next steps are to examine the probe’s data after its 16th and 34th passes meaning it will be a few more months before they are able to learn more of Jupiter’s mysterious magnetosphere.

By Keri McNamara, EGU 2018 General Assembly Press Assistant

Further reading

Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45, 2590–2596. 2018

Bolton, S. J. et al. Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science, 356(6340), p. 821 LP-825. 2017

Guillot, T. et al. A suppression of differential rotation in Jupiter’s deep interior, Nature. Macmillan Publishers Limited, part of Springer Nature. All rights reserved., 555, p. 227. 2018

May GeoRoundUp: the best of the Earth sciences from around the web

May GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

This month the Earth science media has directed its attention towards a pacific island with a particularly volcanic condition. The Kilauea Volcano, an active shield volcano on the southeast corner of the Island of Hawai‘i, erupted on 3 May 2018, following a magnitude 5.0 earthquake that struck the region earlier that day.

Since the eruption, more than two dozen volcanic fissures have emerged, pouring rivers of lava onto the Earth’s surface and spurting fountains of red-hot molten more than 70 metres into the air.  As of today, Kilauea’s eruption has covered about 3534 acres (14.3 square kilometres) of the island in lava, according to the U.S. Geological Survey’s most recent estimates.

The island’s volcanic event has dealt heavy damages to the local community, forcing thousands of locals to evacuate the affected area. On 4 May, the governor of Hawaii, David Ige, declared a local state of emergency, activating military reservists from the National Guard to help with evacuations. Over the month Kilauea’s eruption has engulfed nearby neighborhoods in an oozing layer of lava, overtaking 75 homes, blocking major roads, swallowing up many vehicles, and even briefly threatening a geothermal power plant.

Kilauea’s molten rock, with temperatures at about 1,170 degrees Celsius, is an obvious danger to the local Hawaiian community (one serious injury reported so far). However, the volcanic eruption presents many airborne hazards as well.

In addition to spewing out lava, the Kilauea eruption has projected ballistic blocks, some up to 60 centimeters across, and released clouds of volcanic ash and vog (a volcanic smog of sulfur dioxide and aerosols). The ashfall and gas emissions can create hazardous conditions for travel, produce acid rain as well as cause irritation, headache and respiratory issues.

Kilauea’s lava has steadily marched towards the coast of the Big Island, and recently reached the Pacific Ocean. This interaction of molten rock and ocean water has created plumes of laze (lava haze). Laze is essentially a cloud of acidic steam, mixed with hydrochloric acid and fine particles of volcanic glass. Coming into contact with the toxic vapour can result in eye and skin irritation as well as lung damage.  

Map as of 2:00 p.m. HST, May 31, 2018. Given the dynamic nature of Kīlauea’s lower East Rift Zone eruption, with changing vent locations, fissures starting and stopping, and varying rates of lava effusion, map details shown here are accurate as of the date/time noted. Shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. (Image: U.S. Geological Survey)

While residents have been fleeing the the Kilauea-affected region, many scientists have rushed to the Big Island to study the eruption. A swarm of researchers have spent the month recording lava flow activity, measuring seismicity and deformation, monitoring ash plumes by aircraft, and taking samples on foot.

Many volcano scientists have also turned to social media to answer questions from the general public about the recent eruption (like why is the eruption pink? Can you roast a marshmallow with lava?) and bust volcano myths floating online (expect no mega-tsunami from this eruption). The EGU’s own early career scientist representative for the Geochemistry, Mineralogy, Petrology & Volcanology Division, Evgenia Ilyinskaya, was invited to explain some volcano lingo on BBC News.

The volcano’s eruption has been ongoing for weeks, with no immediate end in site. Lava flows are still advancing across the region and volcanic gas emissions remain very high, says the U.S. Geological Survey’s Hawaiian Volcano Observatory. You can stay up to date with the volcano’s latest activity on the agency’s site.  

What you might have missed

A team of scientists from the PolarGAP project have found mountain ranges and three massive canyons underneath Antarctica’s ice using radar technology. These valleys play an important role in channeling ice flow from the centre of the continent towards the ocean, according to the researchers. “If Antarctica thins in a warming climate, as scientists suspect it will, then these channels could accelerate mass towards the ocean, further raising sea-levels,” reports an article from BBC News.

Also in Antarctic news, the Natural Environment Research Council (UK) and the National Science Foundation (US) have announced an ambitious plan to determine the Thwaites Glacier’s risk of collapse. The rapidly melting glacier sheds off 50 billion tons of ice a year, and if Thwaites were to completely go under, the meltwater would contribute more than 80 cm to sea level rise. “Because Thwaites drains the very center of the larger ice sheet system, if it loses enough volume, it could destabilize the rest of the entire West Antarctic Ice Sheet,” according to an article in Scientific American. The research team plans to collect various kinds of data on the glacier and use this information to predict the fate of Thwaites and West Antarctica. The $25-million (USD) joint effort will involve about 100 scientists on eight projects over the course of five years, posing to be one of the largest Antarctic research endeavors undertaken.

Meanwhile, looking out hundreds of millions of kilometres away, scientists have made an interesting discovery about one of Jupiter’s potentially habitable moons.

A team of scientists uncovered a new source of evidence that suggests Europa, one of Jupiter’s moons, may be venting plumes of water vapour above its icy exterior shell. The researchers came across this finding while re-examining data collected by NASA’s Galileo spacecraft, which performed a flyby 200 kilometres above the Europa in 1997. While running the decades old data through today’s more sophisticated computer systems, the research team found a brief, localised bend in the magnetic field, a phenomenon that is now recognised as evidence of water plume presence. These new results have made some scientists more confident that NASA’s Europa Clipper mission, set to launch by 2022, will find plumes on Jupiter’s moon.

Links we liked

The EGU Story

A 2007 paper on global climate zones published in Hydrology and Earth System Sciences, a journal of the European Geosciences Union, has been named the most cited source on Wikipedia, referenced more than 2.8 million times. The Guardian and WIRED reported this story that neither Copernicus Publications nor the Australian authors of the paper were aware of.

EGU training schools offer early career scientists specialist training opportunities they do not normally have access to in their home institutions. Up until 15 August 2018, the Union now welcomes requests for EGU support of training schools in the Earth, planetary or space sciences scheduled for 2019.

In addition, the EGU will now accept proposals for conferences on solar system and planetary processes, as well as on biochemical processes in the Earth system, in line with two new EGU conference series named in honour of two female scientists. The Angioletta Corradini and Mary Anning conferences are to be held every two years with their first editions in 2019 or 2020. The deadline to submit proposals is also 15 August 2018.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.