GeoLog

Space and Planetary Sciences

October GeoRoundUp: the best of the Earth sciences from around the web

October GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major story

In October, the UN Intergovernmental Panel on Climate Change (IPCC) released a landmark report and summary statement that detailed the severe consequences for our environment and society if global warming continues unabated. The special report, also known as the SR15, was compiled by 91 authors from 40 countries, and cites more than 6,000 peer-reviewed studies.

“There’s no doubt that this dense, science-heavy, 33-page summary is the most significant warning about the impact of climate change in 20 years,” said Matt McGrath an environment correspondent for BBC News.

The  EGU announced its support of the IPCC report in a statement published last month. In this address, EGU President Jonathan Bamber said: “EGU concurs with, and supports, the findings of the SR15 that action to curb the most dangerous consequences of human-induced climate change is urgent, of the utmost importance and the window of opportunity extremely limited.”

The IPCC was first commissioned to produce this report by the UN Convention on Climate Change following the Paris agreement, where world leaders pledged to limit global warming to well below 2ºC above pre-industrial levels and “pursue efforts” towards 1.5ºC. The goal of the report was to better understand what it would take for the world to successfully meet this 1.5ºC target and what the consequences would be if we are unable to reach this goal.

The report illustrates the two different outcomes that would arise from limiting global warming to 1.5ºC or allowing temperatures to rise to 2ºC.

While a half-degree doesn’t come across like a pronounced difference, the report explains that additional warming by this degree could endanger tens of millions more people across the world with life-threatening heat waves, water shortages, and coastal flooding from sea level rise. This kind of warming would also increase the chances that coral reefs and Arctic sea ice in the summer would disappear. These are just a few of the impacts detailed in the report. Recently, Carbon Brief has also produced an interactive graphic that does a deep dive into how climate change at 1.5ºC, 2ºC and beyond will impact different regions and communities around the world.

It should be noted that while limiting warming to 1.5ºC is the better of the two pathways, it still isn’t optimal. For example, under this warming threshold, the authors of the report project that global  sea levels would still rise, coral reefs would decline by 70-90%, and more than 350 million additional people would be exposed to severe drought.

Furthermore, the report goes on to explain what action (and just how much of it) would be necessary to limit warming to 1.5ºC. An article from the Guardian perhaps put it best: “there’s one simple critical takeaway point: we need to cut carbon pollution as much as possible, as fast as possible.

The report authors emphasise that limiting warming would require a massive international movement to reduce emissions and remove carbon dioxide from the atmosphere; and additionally this effort would need to happen within the next few years to avoid the most severe outcomes. They warn that if greenhouse emissions are still released at their current rate, the Earth’s temperature may reach 1.5ºC some time between 2030 and 2052, and reach more than 3ºC by 2100. Even more so, they concluded that the greenhouse gas reduction actions currently pledged by various countries around the world are still not enough to limit warming to 1.5ºC.

Measures to reach this temperature target include reducing global carbon dioxide emissions by 45% from 2010 levels by 2030, and reach a ‘net-zero’ by 2050. and making dramatic investments in renewable energy. They conclude that 70-35% of the world’s electricity should be generated by renewables like wind and solar power by 2050. By that same time, the coal industry would need to be phased out almost entirely.

Moreover, the authors say that we would need to expand forests and develop technology to suck carbon dioxide from the atmosphere. The report notes that climate action needs to be taken on an individual level as well, such as reducing the amount of meat we eat and time we spend on flying airplanes.

The authors report that we have the technology and means to limit warming by 1.5ºC, but they warn that the current political climate could make reaching this goal less likely.

“Limiting warming to 1.5ºC is possible within the laws of chemistry and physics but doing so would require unprecedented changes,” said Jim Skea, Co-Chair of IPCC Working Group III, in an IPCC press release.

Still have questions about the recent report? The IPCC has released a comprehensive FAQ and Carbon Brief has published an in-depth Q&A that addresses questions such as why the panel released the report, why adaptation is important, what the reaction has been, and what’s next.

What you might have missed

BepiColombo approaching Mercury. Credit: ESA/ATG medialab; Mercury: NASA/JPL

Last month the science media was also abuzz with a series of space agency news. On 20 October, the European-Japanese mission BepiColombo successfully launched from French Guiana, starting its seven-year long journey to Mercury, the smallest and least explored terrestrial planet in the Solar System. The probe is poised to be the third mission to travel to Mercury.

Once it arrives in 2025, the spacecraft will actually separate into two satellites, which will orbit the planet for at least one year. One satellite will investigate Mercury’s magnetic field while the other will take a series of measurements, including collecting data on the planet’s terrain, topography, and surface structure and composition. The researchers involved with the mission hope to learn more about Mercury’s origins and better understand the evolution of our solar system.

While one mission has started its journey, another’s has come to an end. Last month NASA’s planet-hunting Kepler space telescope has officially been retired after running out of fuel. Over its 9-year life span, the telescope has spotted more than 2,600 planets outside our solar system, many of which are possibly capable of sustaining life.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington. “Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

However, even though Kepler’s planet-scoping days are over, NASA’s new space observatory, the Transiting Exoplanet Survey Satellite (TESS) mission, which launched in April 2018, will continue the search for habitable worlds.

NASA’s Kepler space telescope, shown in this artist’s concept, revealed that there are more planets than stars in the Milky Way galaxy. Image credit: NASA

Links we liked

The EGU story

Earlier in October, we announced the winners of the 2019 EGU awards and medals: 45 individuals who have made significant contributions to the Earth, planetary and space sciences and who will be honoured at the 2019 EGU General Assembly next April. We have also announced the winners of the Outstanding Student Poster and PICO (OSPP) Awards corresponding to the 2018 General Assembly, which you can find on our website. Congratulations to all!

This month, we also opened the call for abstracts for the EGU 2019 General Assembly. If you are interested in presenting your work in Vienna in April, make sure you submit your abstract by 10 January 2019, 13:00 CET. If you would like to apply for a Roland Schlich travel grant to attend the meeting, please submit your abstract no later than 1 December 2018. You can find more information on the EGU website.

Interested in science and art? After successfully hosting a cartoonist and a poet in residence at last year’s annual meeting, we are now opening a call for artists to apply for a residency at the EGU 2019 General Assembly. The deadline for applications is 1 December. You can find more information about the opportunity online here.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

September GeoRoundUp: the best of the Earth sciences from around the web

September GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major stories

This month has been a whirlwind of Earth and space science news; the majority focusing on natural hazards. Powerful cyclones, earthquakes, and tsunamis have received significant coverage from the geoscience media. Quickly recap on an action-packed month with our overview:

On 14 September, Hurricane Florence, made landfall in the mid-Atlantic region of the United States, making first contact near Wrightsville Beach in North Carolina then traveling up the East Coast. By the time Florence had reached the US coastline, the cyclone’s sustained wind speed had dropped considerably, downgrading the hurricane from a category 4 to category 1 storm on the Saffir–Simpson scale.

This designation may sound mild, but as many scientists and journalists have pointed out, sluggish hurricanes are especially dangerous, since they are more likely to dump heavy rainfall over a relatively small surface area compared to faster storms that distribute their rainfall over more territory. This proved to be true for Hurricane Harvey, which dumped more than 150 centimetres of rain onto some areas of Houston, Texas.

Hurricane Florence’s record-breaking rainfall forced more than a million people to evacuate their homes, and experts estimate that the storm inflicted damages worth more than $38 billion (USD). The hurricane also produced very concerning environmental damages. In Wilmington, North Carolina, for instance, the the rainfall flooded a pit of coal ash at a power plant, releasing more than 1,530 cubic metres of ash, with much of it likely ending up in a nearby lake.

Across the planet, just one day following Hurricane Florence’s landfall, Super Typhoon Mangkhut wreaked havoc on southeast Asia, pounding the Mariana Islands, the Philippines, China, Taiwan, and Vietnam with strong wind and rain. Reaching wind speed over 240 kilometres per hour, Mangkhut is the most intense storm of the year so far. The New York Times created an interesting three-dimensional visual of the storm’s intensity, using NASA satellite data.

In addition to unleashing incredibly strong winds, the typhoon’s rainfall also triggered deadly landslides. Just outside of the city Baguio, which recorded more than 75 centimetres of rain, more than 40 gold miners were buried under a landslide that hit their bunkhouse.

Big storms like Hurricane Florence and Typhoon Mangkhut are expected to be more frequent in the future as our climate changes. And this stems from many factors; a recent article from the New York Times explains that, due to climate change, the world’s oceans are warming (fueling more hurricane formation), the atmosphere is holding more moisture (leading to wetter storms), hurricane wind speeds are slowing down (causing more concentrated rainfall), and Earth’s sea levels are rising (increasing the risk of flooding).

Last week, a 7.5-magnitude earthquake struck the Indonesian island of Sulawesi, sending a massive tsunami, with waves up to 6 metres high, into Palu Bay, causing massive devastation in the regional capital Palu and surrounding areas. Officials report that nearly 1,350 people have died from the earthquake and tsunami, and the death toll is expected to rise as rescue workers make their way towards more remote places. Scientists told BBC that “a combination of geography, timing and inadequate warnings meant that what happened in Palu was a worst case scenario.”

Map of the September 28, 2018 Palu, Indonesia Earthquake. Credit: USGS.

Indonesian aid workers and humanitarian relief envoys are currently working to provide supplies and assistance to the affected communities. At the same time, scientists are still puzzling over the tsunami’s strength, which caught many experts by surprise. This is because the earthquake’s behavior isn’t known for generating catastrophic tsunamis.

Powerful tsunamis are typically caused by earthquakes with vertical motion, where part of the seafloor juts forward, disturbing the water column and consequently sending massive waves to the coast. The 2004 Indian Ocean tsunami, for example, was caused by a 9.1 magnitude megathrust earthquake. On the other hand, last week’s quake is known as a ‘strike-slip earthquake,’ where the ground shifts horizontally. This kind of movement doesn’t move ocean water as dramatically.

“Some early calculations suggest a floor displacement of perhaps half a metre. Significant but generally insufficient to produce the waves that were recorded,” reported the BBC.

While it is too early to tell what exactly happened, scientists suspect that a number of factors could have played part in helping the tsunami gather strength. For example, underwater landslides have been known to trigger tsunamis of similar strength. Additionally Palu Bay’s narrow geometry could have amplified the waves’ height.

The underlying factors that contributed to the event will hopefully become more clear as scientists analyse the series of events in more detail.

What you might have missed

This month, the Japanase spacecraft Hayabusa 2 has sent three robots to the rocky surface of an asteroid near Earth, known as Ryugu. The spacecraft had successfully reached the asteroid this June, after travelling for more than three years. The craft first released two small devices, no bigger than frying pans, which tumbled around the rock’s surface and even sent digital postcards and a short video back home. A few days ago, Hayabusa 2 released a third rover, which will use a suite of different scientific instruments to collect data on the asteroid. “Hayabusa2 itself is likely to make the first of three touchdowns on the asteroid to collect samples later this month,” said Science Magazine.

Links we liked

  • StarTrek creators once said that Spock’s fictional home planet Vulcan orbited the 40 Eridani A star. Now scientists have found an exoplanet that fits the description.
  • Rediscovered: the 19th century geological drawings of Orra White Hitchcock, a pioneering female scientific illustrator
  • Researchers discover that kidney stones grow and dissolve much like geological crystals
  • We all know about lava volcanoes, but have you heard of ice volcanoes? New study suggests that cryovolcanoes have likely been erupting for billions of years on Ceres.
  • This new map of Antarctica is like ‘putting on glasses for the first time and seeing 20/20’

The EGU story

Last week, the EGU hosted its first science-policy dinner debate in Brussels. The event, ‘Horizon Geoscience: overcoming societal challenges, creating change’, was organised in collaboration with the European Federation of Geologists (EFG) and brought together geoscientists, policymakers and industry representatives. On the EGU website, we report on the outcome of the discussion and publish the key findings from the Horizon 2020 Geoscience Survey conducted earlier this year.

Panel members during the Horizon Geoscience dinner debate. From Left to right: Jonathan Bamber, John Ludden Lieve Weirinck, Jean-Eric Paquet and Vitor Correia

In the past few weeks, we have also issued three press releases highlighting research published in some of EGU’s open access journals. Follow the links to find out how bombing raids in the Second World War impacted the ionosphere, how glacial geoengineering could help limit sea-level rise, and what the point of no return for climate action might be.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

August GeoRoundUp: the best of the Earth sciences from around the web

August GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major story

The south Indian state of Kerala has suffered unusually heavy monsoon rainfall this month, triggering the worst flooding the state has seen in more than a century.

Officials have reported nearly 500 deaths, while more than one million people have been evacuated to over 4,000 relief camps.

Between 1 and 19 August, the region received 758.6 milimetres of rain, 2.6 times the average for that season. In just two days (15-16 August), Kerala sustained around 270 milimetres of rainfall, the same amount of rainfall that the entire state receives in one month typically, said Roxy Mathew Koll, a climate scientist at the Indian Institute of Tropical Meteorology and the National Oceanic and Atmospheric Administration, to BBC News.

Due to the heavy downpours, rivers have overflowed, water from several dams has been released, and lethal landslides have swept away rural villages.

“Officials estimated about 6,000 miles (10,000km) of roads had been submerged or buried by landslides,” reported the Guardian. “Communications networks were also faltering, officials said, making rescue efforts harder to coordinate.”

Experts report that the event’s severity stems from many factors coming together.

For instance, a recent study led by Koll has shown that in the past 50-60 years, monsoon winds have weakened, delivering less rain on average in India. However, the distribution of rainfall is uneven, with long dry spells punctuated by heavy rainfall events. Koll’s research suggests that central India has experienced a threefold rise in the number of widespread extreme rain events during 1950-2012. In short, it doesn’t rain as often; but when it rains, it pours.

Scientists also say that increased development in the region had exacerbated the monsoon’s impact.

For example, usually when storms release heavy rainfall, much of that water is absorbed or slowed down by vegetation, soil, and other natural obstacles. However, scientists point out that “over the past 40 years Kerala has lost nearly half its forest cover, an area of 9,000 km², just under the size of Greater London, while the state’s urban areas keep growing. This means that less rainfall is being intercepted, and more water is rapidly running into overflowing streams and rivers.”

To make matters worse, increased development can also change how effectively rivers handle heavy downpours. For instance, canals and bridges can make rivers more narrow and can create sediment build-up, which slows water flow. “When there is a sudden downpour, there is not enough space for the water so it floods the surrounding area,” explains Nature.

Some experts have added that badly-timed water management practices are also partly to blame for the flood’s devastation on local communities.

“A contributing factor is that after the heavy rain, authorities began to release water from several of the state’s 44 dams, where reservoirs were close to overflowing. The neighbouring state of Tamil Nadu also purged water from its over-filled Mullaperiyar dam, which wreaked yet more havoc downstream in Kerala,” Nature adds.

While floodwaters began to recede in late August, rescue teams are still searching submerged neighborhoods to deliver aid and evacuate survivors.

What you might have missed

Water on moon confirmed

Recent research published this month suggest that there is almost certainly frozen water on the moon’s surface.

The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right). Blue represents the ice locations, plotted over an image of the lunar surface, where the gray scale corresponds to surface temperature (darker representing colder areas and lighter shades indicating warmer zones). (Credit: NASA)

“Previous observations indirectly found possible signs of surface ice at the lunar south pole, but these could have been explained by other phenomena, such as unusually reflective lunar soil,” NASA officials said in a published statement.

Now, scientists involved with the new study claim that they’ve found definitive evidence that ice is located within craters on the moon’s north and south poles.

During daylight hours, the moon’s surface can be brutally hot, often reaching temperatures as high as 100 degrees Celsius. However, due to the moon’s axial tilt, some parts of the lunar poles don’t receive sunlight. Scientists estimate that some craters situated within these permanently dark polar regions are cold enough to sustain pockets of water-ice.

Because the moon’s poles are so dark, scientists have had a hard time studying the lunar craters. But Shuai Li, a planetary researcher at the University of Hawaii at Manoa and lead author of the study, and his colleagues tried a creative way to shed some light on shadowed craters, using data collected from India’s Chandrayaan-1 lunar probe ten years ago.

“They peered into dark craters using traces of sunlight that had bounced off crater walls,” reports the New York Times. “They analyzed the spectral data to find places where three specific wavelengths of near-infrared light were absorbed, indicating ice water.”

As of now, the researchers still aren’t sure how much ice there is, or how it found its way to the moon’s poles. But if enough accessible ice exists close to the lunar surface, the water could be used as a resource for future missions to the moon, from a source of drinking water to rocket fuel.

Mapping Earth’s winds from above

Also this month, scientists from the European Space Agency launched a satellite that will profile the world’s winds, in hopes that the data will greatly improve weather forecasts and provide insight for long-term climate research. The satellite, named Aeolus after the celestial keeper of the winds in Greek mythology, was sent to orbit from French Guiana on Wednesday 22 August.

The rocket was due to lift off on Tuesday, but the launch was postponed – ironically – due to high altitude winds,” reports BBC News.

Aeolus profiling the word’s winds (Credit: ESA)

Equipped with a Doppler wind lidar, Aeolus will send powerful laser pulses down to Earth’s atmosphere and measure how air molecules and other particles in the wind scatter the light beam.

Researchers expect that wind data from Aeolus will greatly improve current efforts to forecast storms, especially their severity over time. While scientists have many ways to measure wind behavior, current methods are unable to capture wind movement from all corners of the Earth. Aeolus will be the first mission to monitor winds across the entire globe.

Using data collected by Aeolus, experts estimate that the quality of forecasts will increase by up to 15% within the tropics, and 2-4% outside of the tropics.

“If we improve forecasts by 2%, the value for society is many billions of dollars,” said Lars Isaksen, a meteorologist at the European Centre for Medium-Range Weather Forecasts (ECMWF), to Nature.


Learn how Earth’s wind is generated and why we need to measure it. (Credit: ESA

Links we liked

The EGU story

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance! Help shape the scientific programme of the 2019 General Assembly.

Before the end of today (6 September), you can suggest:

This month we released two press releases from research published in our open access journals. Take a look at them below:

Landslides triggered by human activity on the rise

More than 50,000 people were killed by landslides around the world between 2004 and 2016, according to a new study by researchers at UK’s Sheffield University. The team, who compiled data on over 4800 fatal landslides during the 13-year period, also revealed for the first time that landslides resulting from human activity have increased over time. The research is published today in the European Geosciences Union journal Natural Hazards and Earth System Sciences.

Deadline for climate action – Act strongly before 2035 to keep warming below 2°C

If governments don’t act decisively by 2035 to fight climate change, humanity could cross a point of no return after which limiting global warming below 2°C in 2100 will be unlikely, according to a new study by scientists in the UK and the Netherlands. The research also shows the deadline to limit warming to 1.5°C has already passed, unless radical climate action is taken. The study is published today in the European Geosciences Union journal Earth System Dynamics.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

July GeoRoundUp: the best of the Earth sciences from around the web

July GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major stories  

Signs of water 55 million kilometres away

Last week scientists announced that they have found signs of existing water on Mars, offering new hope to the possibility of uncovering life on the Red Planet’s subsurface.  

Radar observations made by the European Space Agency’s Mars Express satellite, suggest that a liquid lake is buried 1.5 kilometres beneath an ice cap situated near the south pole of Mars. Scientists think that this body of water is likely a few metres deep and 20 kilometres across, “nearly three times larger than the island of Manhattan,” reported Scientific American.

A schematic of how scientists used radar to find what they interpret to be liquid water beneath the surface of Mars. (Credit: ESA)

For the last 12 years the Mars Express satellite has been taking measurements of Mars by sending beams of radar pulses into the planet’s immediate interior. As these waves bounce back, the brightness of the reflection gives information on the material lying beneath Mars’ surface.

The researchers involved came across this discovery while analysing three years worth of data collected by the spacecraft.

“The bluer the colors, the brighter the radar reflection from the material it bounced off. The blue triangle outlined in black in the middle is the purported lake,” reported Science News.

Previous observations, made by NASA’s Curiosity rover for example, have found lake beds on the planet’s exterior, signifying that water may have flowed on Mars in the past. However, if this new finding is confirmed, it would be the first discovery of an existing stable body of water, one of the conditions believed to be necessary for life to thrive.

Context map: NASA/Viking; THEMIS background: NASA/JPL-Caltech/Arizona State University; MARSIS data: ESA/NASA/JPL/ASI/Univ. Rome; R. Orosei et al 2018 (distributed via ESA)

“We are not closer to actually detecting life,” said Manish Patel from the Open University to BBC News, “but what this finding does is give us the location of where to look on Mars. It is like a treasure map – except in this case, there will be lots of ‘X’s marking the spots.”

In their study, published in Science last week, the team remarked, “there is no reason to conclude that the presence of subsurface water on Mars is limited to a single location.”

Northern hemisphere feels the heat

In other news, the two words best describing the northern hemisphere this summer could very well “hot” and “dry,” as a series of heat waves have taken hold of several regions across Europe, Asia, North America and northern Africa. Many countries this month, including Japan, Algeria and Canada, have even experienced record-breaking temperatures.

A look at how this year’s heatwave has changed the colour of our vegetation in just one month (Credit: ESA

For some places, above average temperatures and dry conditions have helped fuel devastating wildfires. More than 50 wildfires have swept through Scandinavian forests this summer, many well within the Arctic Circle, causing Sweden to request emergency aid from nearby countries.

Smoke rises from a wildfire in Enskogen. (Credit: Swedish Environmental Protection Agency/Maja Suslin)

A major wildfire also ignited near Athens, Greece this month, resulting in more than 85 death, with dozens still missing. While Greek officials claim that there are “serious indications” that the flames were brought upon by arson, they also note that the region’s climate conditions were extreme.

To many scientists, this onslaught of hot and dry conditions is a taste of what may soon become the norm.  Of course, these conditions (in Europe, for example) are partly due to weather. “The jet stream – the west-to-east winds that play a big role in determining Europe’s weather – has been further north than usual for about two months,” reports the Guardian, leading to sweltering conditions in the UK and much of Europe, while leaving Iceland cool and stormy.  

However, scientists say that heatwaves in the northern hemisphere are very much linked to global warming. “There’s no question human influence on climate is playing a huge role in this heatwave,” said Myles Allen, a climate scientist at the University of Oxford, to the Guardian in the same article.

A recent assessment on the ongoing heat wave in Europe reports that these conditions are more likely to occur due to climate change. “The findings suggest that rising global temperatures have increased the likelihood of such hot temperatures by five times in Denmark, three times in the Netherlands and two times in Ireland,” said Carbon Brief.

What you might have missed

Geologists have given a name to Earth’s most recent chapter: Meghalayan Age. The announcement was made earlier this month when the International Union of Geological Sciences updated the International Chronostratigraphic Chart, which classifies Earth’s geologic time scale. The new update has divided the Holocene Epoch (the current time series which began 11,700 years ago, when the Earth was exiting its last ice age) into three stages: the Greenlandian, the Northgrippian, and then Meghalayan.

The Meghalayan Age represents the time between now and 4,200 years ago, when a mega-drought led to the collapse of many civilisations across the world. The middle phase, Northgrippian (from 8,300 years ago to 4,200 years ago), is marked by an sudden cooling event brought on by massive glacial melt in Canada that affected ocean currents. Finally the oldest phase, Greenlandian, (from 11,700 years ago to 8,300 years ago) is marked by the end of the last ice age.

The recent update has created some unrest in the geosciences community. “There is still an active debate about assigning a new geologic slice of time to reflect specifically the influence of humans on the planet,” reported BBC News. Some scientists say that the new divisions conflict with the current work being done on proposing a new epoch classification, famously called the ‘Anthropocene,’ which would be marked by the beginning on significant human impact on Earth’s geology and ecosystems.

Links we liked

The EGU story

This month we released not one but two press releases from research published in our open access journals. The findings from both studies have important societal implications. Take a look at them below.

New study: oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”

The Baltic Sea is home to some of the world’s largest dead zones, areas of oxygen-starved waters where most marine animals can’t survive. But while parts of this sea have long suffered from low oxygen levels, a new study by a team in Finland and Germany shows that oxygen loss in coastal areas over the past century is unprecedented in the last 1500 years. The research was published in the European Geosciences Union journal Biogeosciences.

New study puts a figure on sea-level rise following Antarctic ice shelves’ collapse

An international team of scientists has shown how much sea level would rise if Larsen C and George VI, two Antarctic ice shelves at risk of collapse, were to break up. While Larsen C has received much attention due to the break-away of a trillion-tonne iceberg from it last summer, its collapse would contribute only a few millimetres to sea-level rise. The break-up of the smaller George VI Ice Shelf would have a much larger impact. The research was published in the European Geosciences Union journal The Cryosphere.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.