GeoLog

Geosciences Column

Geosciences Column: How erupting African volcanoes impact the Amazon’s atmosphere

Geosciences Column: How erupting African volcanoes impact the Amazon’s atmosphere

When volcanoes erupt, they can release into the atmosphere a number of different gases initially stored in their magma, such as carbon dioxide, hydrogen sulfide, and sulfur dioxide. These kinds of gases can have a big influence on Earth’s atmosphere, even at distances hundreds to thousands of kilometres away.

A team of researchers have found evidence that sulfur emissions from volcanic eruptions in Africa can be observed as far as South America, even creating an impact on the Amazon rainforest’s atmosphere. The results of their study were published last year in the EGU journal Atmospheric Chemistry and Physics.

Amazon Tall Tower Observatory based in the Amazon rainforest of Brazil (Credit: Jsaturno via Wikimedia Commons)

In September 2014, the Amazon rainforest’s atmosphere experienced an unusually sharp spike in the concentration of sulfate aerosols. During this period, the Amazon Tall Tower Observatory (ATTO) based in Brazil reported levels of sulfate never recorded before in the Amazon Basin.

Sulfate aerosols are particles that take form naturally from sulfur dioxide compounds in the atmosphere. When sulfate aerosols spread throughout the atmosphere, the particles often get in the way of the sun’s rays, reflecting the sunlight’s energy back to space. These aerosols can also help clouds take shape. Through these processes, the particles can create a cooling effect on Earth’s climate. Sulfate aerosols can also facilitate chemical reactions that degrade Earth’s ozone layer.

Fossil fuel and biomass burning have been known cause an increase in atmospheric sulfate, but researchers involved in the study found that neither human activity increased the level of sulfate in the atmosphere significantly. Instead, they examined whether a volcanic eruption could be responsible.

Scientists have suggested for some time that sulfur emissions in the Amazon could come from African volcanoes, but until now they’ve lacked proof to properly justify this idea.

Edited Landsat 8 image of the volcanoes Nyamuragira and Nyiragongo in Congo near the city of Goma. (Credit: Stuart Rankin via flickr, NASA Earth Observatory images by Jesse Allen, using Landsat data from the U.S. Geological Survey.

However, in this study the research team involved caught volcanic pair in the act. By analysing satellite images and aerosol measurements, the researchers found evidence that in 2014, emissions from the neighboring Nyiragongo-Nyamuragira volcano complex in the Democratic Republic of the Congo, central Africa, increased the level of sulfate particles in the Amazon rainforest’s atmosphere.

Satellite observations revealed that volcanoes experienced two explosive events in September 2014, releasing sulfur emissions into the atmosphere. During that year, the volcanic complex was reportedly subject to frequent eruptive events, sending on average 14,400 tonnes of sulfur dioxide into the atmosphere a day during such occasions. This amount of gas would weigh more than London’s supertall Shard skyscraper.

Map of SO2 plumes with VCD > 2.5 × 1014 molecules cm−2 color-coded by date of observation. The 15-day forward trajectories started at 4 km (above mean sea level, a.m.s.l.) at four locations within the plume detected on 13 September 2014 (light blue) are indicated by black lines with markers at 24 h intervals. (Credit: Jorge Saturno et al.)

The images further show that these emissions were transported across the South Atlantic Ocean to South America. The sulfate particles created from the emissions were then eventually picked up by an airborne atmospheric survey campaign and the ATTO in the Amazon.

The researchers of the study suggest that these observations indicate that African volcanoes can have an effect on the Amazon Basin’s atmosphere, though more research is needed to understand the full extent of this impact.

By Olivia Trani, EGU Communications Officer

References and further reading

Volcanic gases can be harmful to health, vegetation and infrastructure. Volcano Hazards Program. USGS.

Aerosols and Incoming Sunlight (Direct Effects). NASA Earth Observatory

Saturno, J., Ditas, F., Penning de Vries, M., Holanda, B. A., Pöhlker, M. L., Carbone, S., Walter, D., Bobrowski, N., Brito, J., Chi, X., Gutmann, A., Hrabe de Angelis, I., Machado, L. A. T., Moran-Zuloaga, D., Rüdiger, J., Schneider, J., Schulz, C., Wang, Q., Wendisch, M., Artaxo, P., Wagner, T., Pöschl, U., Andreae, M. O. and Pöhlker, C.: African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest, Atmospheric Chemistry and Physics, 18(14), 10391–10405, doi:10.5194/acp-18-10391-2018, 2018.

Geosciences Column: climate modelling the world of Game of Thrones

Geosciences Column: climate modelling the world of Game of Thrones

Disclaimer: This article contains minor spoilers for Season 8 of “Game of Thrones.” A basic understanding of the world of Game of Thrones is assumed in this post.

The Game of Thrones world of ice and fire is an unpredictable place both politically and environmentally. While the fate of the Iron Throne is yet to be confirmed, a humble steward has been working diligently to make some sense of the planet’s peculiar climate. The results could help scholars assess when future winters will be coming or how wind patterns may influence where eastern attacks on Westeros from invading dragons and ships would occur.  

It is known that the realms of Westeros and Essos are subject to long-living seasons, with many extending over several years, but Samwell Tarly, the former heir of House Tarly and current steward of the Night’s Watch, has developed a new theory to explain this long seasonal cycle.

His research suggests that the seasons’ extended lifespans could be due to periodic changes in the planet’s tilt as it orbits around the Sun. The results were published in the Philosophical Transactions of the Royal Society of King’s Landing in the Common Tongue, with translations available in Dothraki and High Valyrian.

Tarly carried out his analysis while on sabbatical at the Citadel in Oldtown, Westeros. In the published article he notes that his study was “inspired by the terrible weather on the way here to Oldtown”.

Uncovering climate observations and models

Tarly’s first developed his theory after studying observational climate records stored in the Citadel library’s collections. Many of these manuscripts contain useful information on a number of climate conditions present within the Game of Thrones world, including the multiyear length of seasons.

Seasons occur when regions of a planet receive different levels of sunlight exposure throughout a year. The southern and northern hemispheres experience opposite degrees of sunlight exposure due to the natural tilt of the planet’s axis as it orbits around the Sun. For example, when the southern hemisphere is tilted closer to the Sun it experiences a warmer season; at the same time the northern hemisphere is tilted away from the Sun, so it experiences a colder season.

When a planet is consistently tilted on one side as it orbits around the Sun, the world experiences four seasons during one year. Tarly proposed that seasons could last over several years if the tilt of a planet changes during its orbit: “so that the Earth ‘tumbles’ on its spin axis, a bit like a spinning top”, he explains. If a planet were to only change the side of its tilt once a year, it would experience permanent seasons.

Caption: an example of Earth’s orbit in which (a) the angle of tilt of the spinning axis of the Earth stays constant through the year (Credit: Dan Lunt, University of Bristol)

Caption: an example of Earth’s orbit in which (b) the tilt “tumbles” as the planet rotates round the Sun, such that the angle of tilt changes, so that the same Hemisphere always faces the Sun, giving a permanent season (Credit: Dan Lunt, University of Bristol)

Tarly put this theory to the test with the help of a climate model that he discovered on a computing machine stored in the Citadel cellars. “Luckily I learned how to code when I was back in Horn Hill avoiding sword practice,” Tarly explains in the text.

By running climate simulations with the proposed parameters of his theory, Tarly found that his model was consistent with much of the observational data present within the Citadel library. The models also estimated many climatic features of the world of Game of Thrones, including the seasonal change in temperature, precipitation and wind direction across Westeros.

In the published article, Tarly notes that his theory doesn’t explain how the planet transitions between summer and winter. He guesses that the tumbling pattern of the planet’s tilt persists for a few years, but then flips at one point so that the hemispheres experience new seasons. “The reasons for this flip are unclear, but may be a passing comet, or just the magic of the Seven (or magic of the red Lord of Light if your name is Melisandre),” Tarly writes.

Caption: The Northern Hemisphere winter (top row (a,b,c)) and summer (bottom row (d,e,f)) modelled climate, in terms of surface temperature (◦C; left column (a,d)) precipitation (mm/day; middle column; (b,e)) and surface pressure and winds (mbar; right column (c,f)). (Credit: Dan Lunt, University of Bristol)

The world of Game of Thrones compared to ‘real’ Earth

Tarly then compared the climate of the world of the Game of Thrones to that of a fictional planet called the ‘real’ Earth; Gilly, his partner and research associate, had found records of this planet’s climate in the Citadel library. The analysis revealed that in winter, The Wall, the northern border of the Seven Kingdoms, was similar in climate to many areas of the ‘real’ Earth, including parts of Alaska in the US, Canada, western Greenland, Russia, and the Lapland region in Sweden and Finland. “I always suspected that Maester St. Nicholas was a member of the Night’s Watch,” Tarly noted.

Caption: High-resolution (0.5◦ longitude ×0.5◦ latitude) mountain height for the whole planet. (b) Model-resolution (3.75◦ longitude ×2.5◦ latitude) mountain height for the region of Westeros and western Essos. (Credit: Dan Lunt, University of Bristol)

On the other hand, the models showed that the climate of Casterly Rock, the southern home of House Lannister, was similar to that of the Sahel region in Africa, eastern China, and a small region nearby Houston, Texas in the US.

Climate sensitivity in a world of ice and fire

Finally, Tarly used the climate models to investigate how climate change might impact the world of Game of Thrones. The simulations were done in response to some “worrying reports from monitoring stations on the island of Lys”; the stations have recently observed increasing concentrations of methane and carbon dioxide in the world’s atmosphere. It is suggested that this spike in greenhouse gas emissions could be due to the rising dragon population in Essos, deforestation from global shipbuilding, and excessive wildfire.

Tarly found that, by doubling the level of atmospheric carbon dioxide in his models, the world would warm on average by 2.1°C over 100 years. The results showed that the greatest warming would occur in the polar regions, since warming-induced sea ice and snow melt can trigger additional warming as a positive feedback.

By comparing this level of warming to the Pliocene period of the ‘real’ Earth 3 million years ago, Tarly predicted that the sea level of the world of Game of Thrones could rise by 10 metres in the long term. This degree of sea level rise is sufficient to flood several coastal cities, including King’s Landing.

In the paper, Tarly stresses that climate action from all the Kingdoms is needed to prevent even more social instability and unrest from climate change. He suggests that all governing bodies should work on reducing their greenhouse gas emissions and invest in renewable energy, such as windmills.

If he survives the war for Westeros, Tarly expects that improving his climate analysis will keep him busy for years to come.

By Olivia Trani, EGU Communications Officer

This unfunded work was carried out by Dan Lunt, from the University of Bristol School of Geographical Sciences and Cabot Institute, Carrie Lear from Cardiff University and Gavin Foster from the University of Southampton during their spare time, using supercomputers from the Advanced Centre for Research Computing at the University of Bristol. You can learn more about the climate models online here.

Geosciences Column: Flooded by jargon

Geosciences Column: Flooded by jargon

When hydrologists and people of the general public use simple water-related words, are they actually saying the same thing? While many don’t consider words like flood, river and groundwater to be very technical terms, also known as jargon, water scientists and the general public can actually have pretty different definitions. This is what a team of researchers have discovered in recent study, and their results were published in EGU’s open access journal Hydrology and Earth System Sciences. In this post, Rolf Hut, an assistant professor at Delft University of Technology in the Netherlands and co-author of the study, blogs about his team’s findings.

On the television a scientist is interviewed, in a room with a massive collection of books:

“Due to climate change, the once in two years flood now reaches up to…”

“Flood?” interrupts my dad “We haven’t had a flood in fifteen years; how can they talk about a once in two years flood?”

The return period of floods is an often used example to illustrate how statistically illiterate ‘the general public’ is supposed to be. But maybe we shouldn’t focus on the phrase ‘once in two years’, but rather on the term ‘flood’. Because: does my dad know what that scientist, a colleague of mine, means when she says “flood”?

In water-science the words that experts use are the same words that people use in daily life. Words like ‘flood’, ‘dam’ or ‘river’. Because we have been using these words for our entire lives, we may not stop and think that, because of our training as water scientists, we may have a different definition than what people outside our field may have. When together with experts on science communication, I was writing a review paper about geoscience on television[1] when we got into the discussion “what is jargon?”. We quickly found out that within geoscience this is an open question.

Together with a team of Netherlands-based scientists, including part-time journalist and scientist Gemma Venhuizen and professor of science communication Ionica Smeets and assistant professor on soils Cathelijne Stoof and professor of statistics Casper Albers we decided to look for an answer to this question. We conducted a survey where we asked people what they thought words like ‘flood’ meant. People could pick from different definitions. Those definitions were not wrong per se, just different. One might be from Wikipedia and another from a policy document from EU officials. We did not want to test if people were correct, but rather if there was a difference in meaning attached to words between water scientists and lay people. For completeness, we also added picture questions where people had to pick the picture that best matched a certain word.

The results are in. We recently published our findings in the EGU journal Hydrology and Earth System Sciences[2] and will present them at the EGU General Assembly in April 2019 in Vienna. As it turns out: words like ‘groundwater’, ‘discharge’ and even ‘river’ have a large difference between the meaning lay-people have compared to water scientists. For the pictures however, people tend to agree more. The figure below shows the misfit distribution between lay people and water scientists: the bigger the misfit, the more people have different definitions. The numbers on the right are the Bayes factor: bigger than 10 indicates strong evidence that differences between lay people and water scientists are more likely than similarities. The words with an asterisk are the picture questions, showing that when communicating using pictures people are more likely to share the same definition.

Graph showing the posterior distribution of the misfit between laypeople and experts by using a Bayes factor (BF) for every term used in the survey. Pictorial questions are marked with an asterisk. A value of the BF <1∕10 is strong evidence towards H0: it is more likely that laypeople answer questions the same as experts than differently. A value of the BF >10 is strong evidence towards H1: differences are more likely than similarities. In addition to a Bayes factor for the significance of the difference, we also calculated the misfit: the strength of the difference. The misfit was calculated by a DIF score (differential item functioning), in which DIF =0 means perfect match, and DIF =1 means maximum difference. (Figure from https://doi.org/10.5194/hess-23-393-2019)

Maybe that scientist talking about floods on the television should have been filmed at a flood site, not in front of a pile of books.

Finally, the term ‘flood’ proved to be one of the words that we do tend to agree on, so maybe dad should take that class in basic statistics afterall…

By dr. ir. Rolf Hut, researcher at Delft University of Technology, the Netherlands

[This article is cross-posted on Rolf Hut’s personal site]

References

[1] Hut, R., Land-Zandstra, A. M., Smeets, I., and Stoof, C. R.: Geoscience on television: a review of science communication literature in the context of geosciences, Hydrol. Earth Syst. Sci., 20, 2507-2518, https://doi.org/10.5194/hess-20-2507-2016, 2016.

[2] Venhuizen, G. J., Hut, R., Albers, C., Stoof, C. R., and Smeets, I.: Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience, Hydrol. Earth Syst. Sci., 23, 393-403, https://doi.org/10.5194/hess-23-393-2019, 2019.

Geosciences Column: Scientists pinpoint where seawater could be leaking into Antarctic ice shelves

Geosciences Column: Scientists pinpoint where seawater could be leaking into Antarctic ice shelves

Over the last few decades, Antarctic ice shelves have been disintegrating at a rapid rate, likely due to warming atmospheric and ocean temperatures, according to scientists. New research reveals that one type of threat to ice shelf stability might be more widespread that previously thought.

A study recently published in EGU’s open access journal The Cryosphere identified several regions in Antarctica were liquid seawater could be leaking into vulnerable layers of an ice shelf.

Scientists have known for some time now that seawater can seep into an ice shelf’s firn layer, the region of compacted snow that is on its way to becoming ice. This seawater infiltration presents an issue to the ice shelf’s stability, since as the seawater spreads throughout the firn layer, the water can create fractures and help expand crevasses already present in the frozen material. Past research has shown that the presence of liquid brine from seawater within an ice shelf is correlated to increased fracturing and calving.

While ice shelf collapse doesn’t directly contribute to sea level rise, since the ice is already floating, stable ice shelves often push back on land-based ice sheets and glaciers, slowing down ice flow into the ocean. Past research has suggested that once an ice shelf collapses, the rate of ice flow from unsupported glaciers can greatly accelerate.

To better understand Antarctic ice shelves’ risk of collapse, the researchers involved with this new study sought to identify where ice shelf firn layers are vulnerable to seawater infiltration. Using Antarctic geometry data, they mapped out the potential ‘brine zones’ within the continent’s ice shelves. These are regions of the ice shelf where the firn layer is both below the sea level and permeable enough to let seawater percolate through.

The results of their analysis revealed that almost all ice shelves in Antarctica have spots where seawater can potentially leak through their layers, with about 10-40 percent of the continent’s total ice shelf area possibly at risk of infiltration.

Map of potential brine zones areas around Antarctica. Map shows areas where permeable firn lies below sea level (the brine zone), with the threshold for firn permeability defined as 750 kg m−3 (red), 800 kg m−3 (yellow) and 830 kg m−3 (blue) calculated using Bedmap2 surface elevation. Bar charts show the mean percentage area of selected ice shelves covered by the brine zone. (Credit: S. Cook et al. 2018)

The researchers compared their estimated points to a map of previously confirmed brine zones, observed through ice cores or radar surveys. After reviewing these records, they identified only one record of brine presence that hadn’t been highlighted by their developed model.

The study found many areas in Antarctica where seawater infiltration could be possible, but has not been previously observed. The findings suggest that this firn layer vulnerability to seawater might be more widespread than previously believed.

The researchers suggest that the most likely new regions where brine from seawater may be present includes the Abbot Ice Shelf, Nickerson Ice Shelf, Sulzberger Ice Shelf, Rennick Ice Shelf, and slower-moving areas of Shackleton Ice Shelf. The regions all contain large swathes of permeable firn below sea level while also subject to relatively warm air temperatures and low flow speeds, the ideal conditions for maintaining liquid brine.

The study points out that there are still many uncertainties in this research, considering the unknowns still present in the data used for mapping and the factors that may influence seawater infiltration. For example, some areas that have large predicted brine zones have an unusually think layer of firn from heavy snowfall. This is the case for the Edward VIII Bay in eastern Antarctica. “Our results indicate the total ice shelf area where permeable firn lies below sea level, but this does not necessarily imply that the firn contains brine,” the authors of the study noted in their article.

Given their findings, the researchers involved recommend that this potentially widespread influence on ice shelves should be further examined and assessed by future studies.

By Olivia Trani, EGU Communications Officer

References

Cook, S., Galton-Fenzi, B. K., Ligtenberg, S. R. M. and Coleman, R.: Brief communication: widespread potential for seawater infiltration on Antarctic ice shelves, The Cryosphere, 12(12), 3853–3859, doi:10.5194/tc-12-3853-2018, 2018.

Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J.Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I.Gomis, E. Lonnoy, T.Maycock, M.Tignor, and T. Waterfield (eds.)]. In Press

Scambos, T. A.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophysical Research Letters, 31(18), doi:10.1029/2004gl020670, 2004.

Scambos, T., Fricker, H. A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R. and Wu, A.-M.: Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups, Earth and Planetary Science Letters, 280(1–4), 51–60, doi:10.1016/j.epsl.2008.12.027, 2009.

State of the Cryosphere: Ice Shelves. National Snow & Ice Data Center