GeoLog

Hydrological Sciences

Imaggeo on Mondays: A Colombian myth with geologic origins

Imaggeo on Mondays: A Colombian myth with geologic origins

This photograph shows El salto del Tequendama, a natural waterfall of Colombia, located in the Department of Cundinamarca at an altitude of 2400 metres above sea level and approximately 30 kilometres southwest of the country’s capital, Bogotá.

The Salto del Tequendama is a space of transit and connectivity between the warm lands of the Magdalena river basin and the cold lands of the Sumapaz paramo, a Neotropical alpine tundra located at 4,000 metres above sea level.

Dutch-Colombian geologist Thomas Van der Hammen concluded that approximately 60,000 years ago the entire savannah of Bogota (populated today by 9 million people) was covered by a large lake, known as the Humboldt Lake, and the associated wetland plants instead of the paramo vegetation seen today.

Over time, the climate became warmer and the bottom of the Humboldt Lake began to rise. 30,000 years ago, the lake’s waters were channelled through the Bogota River and led to the Salto del Tequendama, a real climate event that we Colombians received through the myth of Bochica, a legendary hero to the Colombian indigenous group the Muisca. Here is the summarised myth of Bochica and the Tequendama jump:

“… As the Muiscas had lost respect for the gods, they offended Chibchacum, who had previously been the most beloved of their gods. He decided to punish them by flooding the savanna, for which he gave birth to the Sopo and Tivito rivers, which joined their rivers to the Funza (former name of the Bogotá River). The flood ended with many crops and human lives, until the people clamored with fasting and sacrifices to Bochica to free them from that calamity. The sage Bochica appeared on the rainbow and with his golden scepter, hit the rocks allowing the water to form a gigantic waterfall. So Bochica created the Tequendama jump.”

The large lake was partially dried and separated into smaller wetlands, where Andean plants, deer, foxes, weasels and more than 100 bird species made their home.

The waterfall, famous for its size, surrounding vegetation and vapourous waters, has been widely studied since 1668, when the Bishop of Panamá, Lucas Fernández de Piedrahíta made the first written record of its mythical origin story.

During the 18th and 19th centuries in particular, the Salto was one of the most famous natural attractions both locally and worldwide, due to the waterfall’s 157-metre drop onto a circular rocky abyss in a wooded region of permanent haze.

In the 19th century, large estates, also known as haciendas, were built on the region’s wetlands, and the natural environment was converted into places for fishing, hunting and logging. Through drainage channels, communities dried up the land to establish livestock and agricultural systems. In the last century, as the city of Bogota grew in population and size, the wetlands were filled to build neighborhoods, streets and avenues.

Like many Bogotanos, on a family weekend trip to relieve the stress generated by the chaos of the city and in search of clean air, I took this picture. The Salto was and always has been a fundamental part of the Bogota family mythology.

By Maria Cristina Arenas Bautista, National University of Colombia, Department of Civil Engineering and Agricultural (Bogotá)

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo On Mondays: Reservoir in the Italian Alps

Imaggeo On Mondays: Reservoir in the Italian Alps

Mountain natural streams and reservoirs have a relevant hydrological and ecological importance since they represent reliable sources of freshwater supply to lowland regions and high-quality habitats for fish and cold-water communities. Moreover, streams in mountain environments are of significant importance for users in several socio-economic sectors, such as agriculture, tourism and hydropower.

Given the vulnerability of mountain streams and catchments to the impact of climate changes and the increasing concern about water supply in mountain regions, there is the urgent need for scientists to face integrated, multidisciplinary catchment-scale studies addressing implications of climate change on water resources management and flow regimes.

Description by Daniele Penna, as it first appeared on imaggeo.egu.eu

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Top ten tourist beaches threatened by tsunamis

Top ten tourist beaches threatened by tsunamis

December 2004 saw one of the deadliest natural disasters in recorded history. 228,000 people were killed when an earthquake off the coast of the Indonesian island of Sumatra triggered tsunami waves up to 30 m high. The destruction was extreme as the waves hit 14 different countries around the Indian Ocean. Economic losses totalled over 10 billion US dollars. The tourism industry in particular suffered a significant blow. In Phuket, a province of Thailand, a quarter of the island’s hotels had closed six months after the tsumani.

“The 2004 Sumatra tsunami and some of the recent Pacific Island tsunamis have shown their devastating impact on beaches and beach-related tourism,” says Andreas Schaefer, a researcher from the Karlsruhe Institute of Technology (KIT). But where is disaster likely to strike next? And can we be prepared for it?

Schaefer and his colleagues are trying to find out. “We asked the question: can we quantify potential tsunami losses to tourism industries along beaches?” he says. The number of tourists visiting the most exotic locations in the world, places such as Thailand, Indonesia, Colombia and Costa Rica, are rising twice as fast as the global average. In some cases, visitor numbers are growing by as much as 11 percent each year.

This rise in tourism in tsunami-prone locations is potentially a cause for real concern. “We compiled the first ever global loss index for the tourism industry [associated with beaches],” continues Schaefer. His findings were presented last month at the European Geosciences Union General Assembly in Vienna .

Beaches can be affected by tsunamis in a variety of ways. As well as the immediate threat to human life, a tsunami wave can leave behind piles of debris or offshore sand that can damage a beach environment. Alternatively, large swathes of beach sand might be removed by erosion. And in cases where an earthquake is very close to the shore, the beach itself may be down-thrust or uplifted during the event, leaving it either permanently submerged underwater or high and dry.

To quantify the locations in the world that are most at risk, Schaefer and his colleagues used two large datasets: tourist information and earthquake statistics.

Tourism-derived GDP per capita across the world. (Image credit: Andreas Schaefer)

To calculate the human exposure, “we compiled a global tourism destination database,” he explains. This database includes over 200 countries, at least 10,000 tourist destinations, more than 24,000 beaches, and almost a million hotels from all around the globe.

“It was important to get the latest and best tourism and hotel information,” says James Daniell, another member of the KIT research team. “Tourism contributes over 6 trillion [US] dollars directly and indirectly to the global economy every year.”

The research team then calculated tsunami probabilities all around the world using earthquake statistics and tectonic modelling. Chile, central America, Indonesia and Japan are the main countries that frequently experience large tsunamis.

Over longer time periods, the Caribbean and Mediterranean are also likely to be affected by rarer events. To put the numbers in perspective, if you spend a day on the coast of Mexico you have a one in 60,000 chance of seeing a tsunami; in Crete, this decreases to one in 600,000.

To model the tsunamis, it is also important to have a good understanding of the shape of the seafloor in the vicinity of the tourist sites. In the deep ocean, big tsunamis can have gaps between waves of as much as 200 km and wave heights as small as 1 m; ships are often unable to feel them passing. But as they approach the shore, the water shallows, causing the waves to slow down and pile up. The wave spacing decreases to less than 20 km, whilst the wave heights can grow to tens of metres. Hence, what looks like an innocuous fluctuation at sea can cause major damage when it reaches land. The depth of the adjacent seafloor plays a major role in this.

Simulated tsunamis across the world showing maximum potential wave heights. (Image credit: Andreas Schaefer)

Given the large number of variables at play, tsunami modelling involves many calculations and typically requires the use of a supercomputer. But in a paper published last year, Schaefer helped to develop a new simulation framework called TsuPy, which allows for quick modelling of tsunamis on personal computers. With this in place, he could rapidly simulate more than 10,000 tsunamis all around the world, calculate the expected wave heights at the tourist sites in his database, and estimate the likely economic losses.

The researchers estimate 250 million US dollars in global annual loss to the tourism industry from tsunami waves. Furthermore, every 10 years they expect a single $1 billion event.

Of all the tourist destinations, “Hawaii is the number one,” says Schaefer. This is “because of all the potential tsunamis that come from around the Pacific Ring of Fire,” he explains. “There are so many [tsunami] sources all around, that, even though they are far away, they have an effect.”

The last major tsunami to strike Hawaii was as a result of the biggest earthquake ever recorded: the 1960 magnitude 9.6 Valdivia earthquake on the coast of Chile. 60 people on Hawaii were killed and the damage amounted to 500 million US dollars in today’s terms.

Top ten locations on the global risk index for beach tourist destinations threatened by tsunamis. (Image credit: Andreas Schaefer)

Other notable locations on the top ten list include Valparaiso (Chile), Bali (Indonesia), and Phuket (Thailand). “Locations that are known for their tourism are at the top of the list because there is a lot [of existing infrastructure] that could be damaged,” explains Schaefer.

Slightly surprisingly, southwest Turkey is also high on the list. Furthermore, places like Tonga and Vanuatu are particularly at risk. They have rapidly developing tourist industries and large projected losses per dollar of tourism-related business, so they feature highly on Schaefer’s list. “They are mostly small island nations with a significant need for tourist dollars,” explains Daniell.

For many parts of the world, the results are not necessarily good news. But they are a first step inasmuch as they highlight the locations that are currently thought to be at greatest risk. “We hope, with these results, to raise awareness among tourists. But they do not need to be afraid,” says Schaefer. With adequate preparation and evacuation planning, it is hoped that future disaster on the scale of the 2004 event might be averted.

By Tim Middleton, EGU 2018 General Assembly Press Assistant

References

Schaefer, A., Daniell, J., and Wenzel, F. Beach Tsunami Risk Modelling – A probabilistic assessment of tsunami risk for the world’s most prominent beaches. Geophysical Research Abstracts, Vol. 20, EGU2018-11955, 2018, EGU General Assembly 2018 (conference abstract)

Schaefer, A. and Wenzel, F. TsuPy: Computational robustness in Tsunami hazard modelling. Computers & Geosciences, 102, 148-157, 2017

Imaggeo on Mondays: The best of imaggeo in 2017

Imaggeo on Mondays: The best of imaggeo in 2017

Imaggeo, our open access image repository, is packed with beautiful images showcasing the best of the Earth, space and planetary sciences. Throughout the year we use the photographs submitted to the repository to illustrate our social media and blog posts.

For the past few years we’ve celebrated the end of the year by rounding-up some of the best Imaggeo images. But it’s no easy task to pick which of the featured images are the best! Instead, we turned the job over to you!  We compiled a Facebook album which included all the images we’ve used  as header images across our social media channels and on Imaggeo on Mondays blog post in 2017 an asked you to vote for your favourites.

Today’s blog post rounds-up the best 12 images of Imaggeo in 2017, as chosen by you, our readers.

Of course, these are only a few of the very special images we highlighted in 2017, but take a look at our image repository, Imaggeo, for many other spectacular geo-themed pictures, including the winning images of the 2017 Photo Contest. The competition will be running again this year, so if you’ve got a flare for photography or have managed to capture a unique field work moment, consider uploading your images to Imaggeo and entering the 2018 Photo Contest.

Alpine massifs above low level haze . Credit: Hans Volkert (distributed via imaggeo.egu.eu).

The forward scattering of sunlight, which is caused by a large number of aerosol particles (moist haze) in Alpine valleys, gives the mountain massifs a rather plastic appearance. The hazy area in the foreground lies above the Koenigsee lake; behind it the Watzmann, Hochkalter, Loferer Steinberge and Wilder Kaiser massifs loom up behind one other to the right of the centre line. Behind them is the wide Inn valley, which extends right across the picture.

A lava layer cake flowing . Credit: Timothée Duguet (distributed via imaggeo.egu.eu)

Check out a post from back in May to discover how layers of alternating black lavas and red soils built up to form a giant ‘mille feuilles’ cake at Hengifoss, Iceland’s third-highest waterfall.

Sediment makes the colour . Credit: Eva P.S. Eibl (distributed via imaggeo.egu.eu)

Earth is spectacularly beautiful, especially when seen from a bird’s eye view. This image, of a sweeping pattern made by a river in Iceland is testimony to it. Follow the link to learn more about river Leirá which drains sediment-loaded glacial water from the Myrdalsjökull glacier in Iceland.

Movement of ancient sand . Credit: Elizaveta Kovaleva (distributed via imaggeo.egu.eu).

Snippets of our planet’s ancient past are frozen in rocks around the world. By studying the information locked in formations across the globe, geoscientist unpick the history of Earth. The layers in one of the winning images of the 2017 photo contest may seem abstract to the untrained eye, but Elizaveta Kovaleva (a researcher at the University of the Free State in South Africa) describes how they reveal the secrets of ancient winds and past deserts in a blog post we published in November.

View of the Tuva River and central mountain range
. Credit: Lisa-Marie Shillito (distributed via imaggeo.egu.eu).

Initially, this photo may seem like any other tropical paradise: lush forests line a meandering river, but there is much more to the forests in the foreground than first meets the eye.

On the way back from Antarctica. Credit: Baptiste Gombert (distributed via imaggeo.egu.eu).

Our December 2017 header image – On the way back from Antarctica, by Baptiste Gombert – celebrated #AntarcticaDay.

Angular unconformity. Credit: André Cortesão (distributed via imaggeo.egu.eu).

It is not unusual to observe abrupt contacts between two, seemingly, contiguous rock layers, such as the one seen above. This type of contact is called an unconformity and marks two very distinct times periods, where the rocks formed under very different conditions.

Find a new way . Credit: Stefan Winkler (distributed via imaggeo.egu.eu)

Stephan Winkler’s 2017 Imaggeo Photo Contest finalist photo showcases an unusual weather phenomenon…find out more about this process in the post from last year.

On the way back from Antarctica. Credit: Alicia Correa Barahona (distributed via imaggeo.egu.eu).

August’s social media header image showcases how, in the altiplano of Bolivia, Andean ecosystems, life and the hydrological cycle come together.

Icelandic valley created during a volcanic eruption. Credit: Manuel Queisser (distributed via imaggeo.egu.eu).

The image shows a valley in the highland of Iceland carved out during a volcanic eruption with lava coming from the area visible in the upper right corner. The landscape is playing with the viewers sense of relation as there is no reference. The valley is approximately 1 km wide. The lower cascade of the water fall is ca. 30 m high. A person (ca. 3 pixels wide) is located near the base of the water fall about 50 m away. It was our October header image.

Despite being one of the driest regions on Earth, the Atacama desert is no stranger to catastrophic flood events. This post highlights how the sands, clays and muds left behind once the flood waters recede can hold the key to understanding this natural hazard.

The heart of the Canadian Rocky Mountains. Credit: Jennifer Ziesch (distributed via imaggeo.egu.eu).

“I saw one of the most beautiful place on earth: The glacially-fed Moraine Lake in the Banff National Park, Canada. The lake is situated in the Valley of the Ten Peaks. The beautiful blue colour is due to the mix of glacier water and rock flour,” says Jennifer, who took the photograph of this tranquil setting.

Symbiosis of fire, ice and water . Credit: Michael Grund (distributed via imaggeo.egu.eu)

This mesmerising photograph is another of the fabulous finalists (and winner) of the 2017 imaggeo photo contest. The picture, which you can learn more about in this blog post, was taken at Storforsen, an impressive rapid in the Pite River in northern Sweden, located close to the site of a temporary seismological recording station which is part of the international ScanArray project. The project focuses on mapping the crustal and mantle structure below Scandinavia using a dense temporary deployment of broadband seismometers.

f you pre-register for the 2018 General Assembly (Vienna, 08 – 13 April), you can take part in our annual photo competition! From 15 January up until 15 February, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.