GeoLog

General Assembly

Shape the EGU 2019 scientific programme: The call for sessions is open!

Shape the EGU 2019 scientific programme: The call for sessions is open!

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance!

From today, until 6 Sep 2018, you can suggest:

  • Sessions (with conveners and description),
  • Short Courses, or;
  • Modifications to the existing skeleton programme sessions

Plus from now until 18 January 2019, you can propose townhall meetings. It’s important to note that, for this year’s General Assembly, session proposals for Union Symposia and Great Debates are due by 15 August 2018.

Explore the EGU 2019 Programme Groups (PGs) to get a feel for the already proposed sessions and to decide which PG would be the best fit for your session. When proposing a session, it’s strongly encouraged to form convener teams that reflect diversity in countries/institutes, gender and career level. A minimum of two conveners  and a maximum of five conveners per session is generally desirable.

Does your idea for a session fall under the remit of two (or more) PGs? Co-organization is possible and encouraged between groups! Put your session proposal into one PG, and you will be able to choose other PGs that you believe should be approached for co-organization.

EGU introduced the programme group Interdisciplinary Events (IE) in 2016, which has now been renamed to Inter- and Transdisciplinary Sessions (ITS). ITS looks for links between disciplines in a coordinated and coherent effort, trying to create new approaches that would not be possible if handled separately. ITS has four sub-programme groups that highlight new themes each year. If you plan to propose an Inter- and Transdisciplinary Session, please submit your proposal in programme group ITS and indicate relevant other programme groups in the session description or comment box. For ITS sessions we kindly ask to identify another programme group that becomes the scientific leader of the event. Accepted ITS sessions will be part of the session programme of the scientific leader in addition to the ITS programme.

The PG officers are on-hand to answer questions about the appropriateness of a specific session topic, so don’t hesitate to contact them if you have queries! You can also find more information about the call for sessions (and the organisation of the scientific programme in general) on the EGU 2019 website.

The EGU’s 2019 General Assembly, takes place in Vienna from 7 to 12 April, 2018. For more news about the upcoming General Assembly, you can also follow the offical hashtag, #EGU19, on our social media channels.

June GeoRoundUp: the best of the Earth sciences from around the web

June GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web. 

Major story  

While May’s headlines may have been dominated by the Kilauea Volcano’s recent eruption in Hawaii, the science news world directed its attention to another volcanic event early this month. On June 3, Guatemala’s Volcán de Fuego erupted, sending plumes of volcanic ash several kilometres into the air. The volcano also unleashed an avalanche of hot gas and debris, otherwise known as pyroclastic flows, more than 10 kilometres down the volcano’s flanks onto the surrounding valley.

The Volcán de Fuego has been an active volcano since 2002, however, this latest event has been the volcano’s most violent eruption in more than four decades.

By 23 June, officials reported that the eruption has killed 110 people from surrounding villages, with hundreds more missing or injured.

Both Kilauea and Fuego gained international attention this year, but the two volcanoes exhibit very different behaviours by nature.

Kilauea is a shield volcano, with a relatively gradual slope and a highly fluid lava flow that can travel far distances compared to other volcanic archetypes. While the volcanic eruption’s lava, ash and haze present real threats to nearby communities, very few injuries have been reported.

“Lava flows rarely kill people,” said Paul Segall, a professor of geophysics at Stanford University, to the New York Times. “They typically move slow enough that you can walk out of the way.”

The Fuego volcano on the other hand is a stratovolcano, characterised by a cone-shaped peak built by layers of lava and ash. This type of volcano usually contains more viscous magma, meaning the hot liquid material has a sticky, thicker consistency. This type of fluid in volcanoes “clogs their plumbing and leads to dramatic explosions,” says Smithsonian Magazine.

Stratovolcanoes like Fuego also often release pyroclastic flows. These plumes can be a major threat to human health and make this kind of volcano particularly dangerous. “On its surface, a pyroclastic flow looks like a falling cloud of ash. But if you could peer into the cloud, you would find a really hot and fast-moving storm of solid rock,” reported PBS NewsHour.

Paul Rincon, a science editor for BBC News notes that pyroclastic flows can reach speeds of up to 700 kilometres per hour and are extremely hot, with temperatures between 200 to 700 degrees Celsius.

As of June 17, Guatemalan authorities have officially stopped looking for bodies and survivors. However, some local rescue workers have kept on with their search. 

What you might have missed

Meanwhile this month, in a vastly different part of the world, scientists have uncovered a wealth of new insight into Antarctica and how the region’s ice melts. Some of the discoveries made known are very foreboding while others more uplifting.

Let’s start with the bad news first. A study published this month in Nature revealed that Antarctica is melting faster than ever, and the continent’s rate of ice loss is only accelerating.

The report explains that before 2012 the Antarctic ice sheet steadily lost 76 billion tonnes of ice each year, contributing 0.2 milimetres to sea-level rise annually. However, since then, Antarctica’s rate of ice loss has increased threefold. For the last fives years the ice sheet has shed off 219 billions tonnes of ice each year. This ice loss now corresponds to a 0.6 milimetre contribution, making Antarctica one of the biggest sources of sea-level rise.

The largest iceberg ever recorded broke away from the Antarctic Peninsula in 2017. Pictured here is the iceberg’s western edge. (Credit Nathan Kurtz/NASA)

This record pace could have a devastating impact around the world, the researchers involved with the study say.

“The continent is now melting so fast, scientists say, that it will contribute six inches (15 centimeters) to sea-level rise by 2100,” reports the New York Times.

The articles continues: “’around Brooklyn you get flooding once a year or so, but if you raise sea level by 15 centimeters then that’s going to happen 20 times a year,’ said Andrew Shepherd, a professor of earth observation at the University of Leeds and the lead author of the study.”

On the other hand, one study published this month in Science offers a glimmer of hope, suggesting that a natural geologic process may help counteract some of the Earth’s sea level rise.

A team of researchers found evidence that, in response to losing ice mass, the ground underneath melting ice sheets naturally lifts up, and more substantially than scientists had previously believed. This process could help prevent further ice loss by land locking vulnerable ice sheets.

Scientists say that many ice sheets in the West Antarctic are at risk of collapsing, and furthermore contributing to sea level rise, because they are in direct contact with the ocean. The relatively warm seawater can melt these glaciers from underneath, making these giant frozen masses more at risk of losing a substantial amount of ice.

However, the new research on the West Antarctic Ice Sheet finds that as these ice masses lose weight, the ground underneath springs up, acting much like a memory-foam mattress.

“This adjustment of the land once the weight of the ice has been lifted is known as ‘glacial isostatic adjustment,’” says Carbon Brief. “It is usually thought to be a slow process, but the new data suggests the ground uplift beneath the [Amundsen Sea Embayment] area is occurring at an unprecedented rate of 41mm per year.”

A press release from Delft University of Technology in the Netherlands goes on to say that “the measured uplift rate is up to 4 times larger than expected based on the current ice melting rates.”

While this discovery offers a brighter view to the serious state of Earth’s melting ice, scientists still caution that this natural grounding process may be rendered useless in extreme cases climate change with extensive ice loss.

Links we liked 

The EGU story

For the first time, we gave participants at the annual EGU General Assembly the opportunity to offset the COemissions resulting from their travel to and from Vienna.

We are happy to report that, as a result of this initiative, we raised nearly 17,000 EUR for a carbon offsetting scheme. The Carbon Footprint project the EGU is donating to aims to reduce deforestation in Brazil and “is expected to avoid over 22 million tonnes of carbon dioxide equivalent greenhouse gas emissions over a 40 year period.”

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance! Help shape the scientific programme of EGU 2019.

From now until 6 Sep 2018, you can suggest:

  • Sessions (with conveners and description),
  • Short Courses, or;
  • Modifications to the existing skeleton programme sessions

Plus from now until 18 January 2019, you can propose townhall meetings. It’s important to note that, for this year’s General Assembly, session proposals for Union Symposia and Great Debates are due by 15 August 2018

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

How to convene a session at the General Assembly… in flow charts!

How to convene a session at the General Assembly… in flow charts!

Convening a session at a conference can seem daunting, especially if you are an early career scientist (ECS) and a first-time convener. At the 2018 General Assembly, Stephanie Zihms, the Union-level ECS representative, discussed the basics of proposing, promoting and handling a session in the short course ‘How to convene a session at EGU’s General Assembly.’

In today’s post she has created some simple flow charts to ensure your convening experience is a success. With the call for sessions for the 2019 EGU General Assembly open until 6 September 2018, now’s the perfect time to put this advice into practice!

Did you know that you can help shape the General Assembly by proposing a session?

Follow the flow charts to find out more:

After the session submission deadline, the Programme Committee will look for duplicate sessions and encourage sessions to merge before the call for abstract opens. Once sessions are open for abstract submission, it is then up to you and your convener team to ensure your session is advertised. Try publicising your session as widely as possible. Why not spread the word through social media, mailing lists or even a blog post?

Remember, scientists who would like to be considered for the Roland Schlich travel support have to submit their abstracts by 1 December 2018, prior to the general deadline, to allow for abstract assessment.

Also remember that ECS can apply to be considered for the OSPP (Outstanding Student Poster and Presentation) award. Judges are normally allocated by the OSPP coordinator, but as a convener you need to check each entry has been awarded judges.


Once the general deadline closes, your responsibilities as convener or co-convener depend on the type of session and the number of abstracts. EGU’s conference organisers, Copernicus Meetings, will keep you updated via email and more information about your responsibilities can be found here.

Note that the EGU considers all General Assembly contributions equally important, independent of presentation format. With this in mind, if your session is given oral blocks, make sure your oral slots include presentations from early career scientists as well as established scientists. It’s also a good idea to ensure your diversity selection goes beyond career stage and includes gender and nationality.

As the convener (or co-convener) you need to ensure all abstracts submitted for the Roland Schlich travel support are evaluated and the feedback is provided through the online tool. This should be done as a team.

The minimum number of submitted abstracts required for a session varies each year. This often depends on the type of session requested (oral, poster, PICO) and overall amount of abstracts submitted.

Not all conveners attract the required number of abstracts for their session of choice, but don’t worry. If this happens to you, there are other options available, like converting to different session type or teaming up another session. The EGU Programme Committee works hard to make sure all abstracts are presented at the General Assembly in sessions that are as suitable to them as possible.

Remember, the call for sessions for the EGU General Assembly 2019 closes on 6 September 2018 and the call for Union Symposia and Great Debates proposals ends by 15 August 2018.

By Stephanie Zihms, the Union-level ECS Representative

The EGU’s 2019 General Assembly, takes place in Vienna from 7 to 12 April, 2019. For more news about the upcoming General Assembly, you can also follow the official hashtag, #EGU19, on our social media channels.

Give us the foundation to build our transferrable skills!

Give us the foundation to build our transferrable skills!

The EGU Early Career Scientists’ (ECS) Great Debates offer early career scientists at the EGU General Assembly the chance to network and voice their opinions on important topics in the format of round-table discussions. At the end of the debate, each table delivers a statement that summarises the discussion and recommendations. By publishing the results, we hope to highlight some of the needs of the EGU ECS community and how these matters should be addressed.

At this year’s ECS Great Debate, the topic was transferrable skills in science. The main question was “should early career scientists use time developing transferrable skills?” You may say this is a simple question to answer. Indeed, all the resulting statements indicated that the EGU ECS answer is YES. However, the simple statements hide a much more complex situation; a situation that varies considerably for each individual researcher. Different countries have different standards, different universities set different curricula, and different supervisors have different priorities. Some early career scientists are lucky to have many opportunities to develop transferrable skills, whereas others strive to gain these skills.

Groups defined transferrable skills as ones that could be used in other scientific disciplines and not least, in industry. Indeed, many scientific skills are transferrable. For example, data analysis and statistics were noted as valuable tools across various scientific fields and industry careers. Some groups gave extensive lists of transferrable expertise, and most were not strictly science-based. These included writing, presenting, social media, teaching, team working, project management, networking and critical thinking, to name a few. However, developing these skills do not traditionally fall into the curricula of the geosciences.

Early career scientists having round-table discussions on the importance of developing transferrable skills. (Credit: Olivia Trani)

It was evident that ECS in the EGU consider transferrable skills as extremely important to their careers and their science. They furthermore suggest that researchers should be given time and appropriate credit to develop these skills.

At the same time, many of the ECS debate participants believe in striking a balance between establishing these skills and the scientific skills that their PhDs and publications depend on.

Below you will find a list of the summary statements from the ECS that were present at the Great Debate. These reports, based on the discussions from more than 100 early career scientists, show solid support for transferrable skill training. These results are a clear indication that EGU must continue to work towards offering short courses at the General Assembly on a variety of transferrable skills. Additionally, these statements can help ECS persuade their universities to invest in opportunities to develop these skills if they do not already do so. It is clear that the EGU early career scientist community believes these skills not only help ECS develop their careers, but that they also benefit science and society!

Here are the table’s conclusions:

“Instead of currently developing random skills ourselves, on an ad-hoc basis, we need an environment to support more organized, collaborative, efficient, and recognized skill sets”

“We need transferrable skills to communicate knowledge and help society, therefore learn them, when you need them or want them, others will thank you”

“We should focus on developing these [transferrable] skills but we need to manage our time in order to go deeper into [our] own science”

“Yes, because whether you decide to stay in academia or in industry, these skills will help you be better in your field, help you work on interdisciplinary topics and communicate your work, thus increasing your success. The pros outweigh the cons!”

“Yes, to be a good scientist, researcher, or general human being, it takes more than one skill or field. It takes being open and brave to pursue new experiences to change both yourself and those around you.”

“Scientific careers are not just about getting specific knowledge in your field specialty but being able to adapt yourself to different disciplines.”

“Yes, because you get more job opportunities, it gives you flexibility, it’s fun, it makes you happy, it helps define you and strengthens your personality.”

“Yes, it is important for improving our possibilities after a PhD. We should take these opportunities as early career scientists [and] have more chances to learn these skills.”

“All scientists should be required to take time to develop useful skills for professional and personal development. These developments should not be exclusive to certain groups, should be obligatory with freedom to choose topics, should be offered to supervisors and managers, should include more courses at conferences and there should be more money for travel funding.”

“We need to find a good balance during PhD between doing science and attending courses about transferrable skills.”

“Yes, but plan which relevant transferrable skills you need to develop in the short term in relation to your project, and then update your long-term plan.”

“Transferrable skills will always be useful in your current and future situation. They should be learnt at university. It should be acceptable to spend time learning these skills in courses in tandem with your research.”

By Mathew Stiller-Reeve, co-founder of ClimateSnack and researcher at Bjerknes Centre for Climate Research, Norway

Editor’s note: This is a guest blog post that expresses the opinion of its author and those who participated at the Great Debate during the General Assembly, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.