GeoLog

EGU

GeoPolicy: What does working at the European Environment Agency look like? An interview with Petra Fagerholm

GeoPolicy: What does working at the European Environment Agency look like? An interview with Petra Fagerholm

This blog post features an interview with Petra Fagerholm who is currently leading the team on public relations and outreach in the communications department of the European Environment Agency (EEA). Petra gave a presentation about the EEA during the Science for Policy short course at the 2018 EGU General Assembly. In this interview, Petra describes her career path, what it is like to work at the EEA and provides some tips to scientists who are interested in a career in an EU institution or who would like to share their research with policymakers.

Could you start by introducing yourself and the European Environment Agency (EEA)

My name is Petra Fagerholm, I have worked at the European Environment Agency (EEA) in Copenhagen for 14 years. Currently, I am leading the team on public relations and outreach in the Communications department.

The EEA is an EU agency, which was set up in 1993 to inform the policymakers and the citizens about the status of the environment and to contribute to sustainable development. In addition to the headquarters, a ministerial level expert network across Europe was also established. This network is called “Eionet” and it ensures dataflows for reporting and quality consistency of the assessments we produce.

How does the EEA use science and research?

Experts at the EEA use science and research material when producing reports, briefings and assessments. The EEA translates science into tailor-made knowledge needed for policymaking at a European level.

How did you become the Head of Group for Public Relations and Outreach at the EEA?

I studied Biology at the University of Helsinki, in Finland, where I come from. My University pathway was far away from communication and environment. After a year of exchange at the University of Neuchâtel, Switzerland, I became really interested in human physiology and subsequently I graduated a couple of years later from the University of Strasbourg with a French DEA degree in Neurosciences. I was part of the research group on visual psychophysics when Finland became a member in the EU. Finnish politicians were hiring assistants and out of curiosity (and being young… and fearless…), I applied and got the job. I think the drive for change came from the fact that I felt my research topics and hypothesis were very difficult to solve and funding was hard to get in the area of fundamental life sciences research. I aspired to be part of the new “European Project” for Finland.

After my job at the European Parliament, I was lucky to be recruited on a short-term contract at the European Commission as Scientific Officer in the area of Neurosciences. After a break of 1 year during which I was pregnant with my daughter, I worked for 2 years at Merrill Lynch Investment Bank in London. During that period, I came across the announcement for recruiting new staff at the EEA.

At the EEA, I started at the Executive Director’s office working on strategic coordination and on several short-term projects in the field of sustainability. I have always been keen to lead and support others in their career. I lead the support team in that office for 8 years. After 11 years in total in the director’s office, I was ready to change career and was lucky to be transferred to the communications department. My new tasks were to develop stakeholder approaches to support the communication framework at the EEA and continue to lead the team of outreach.

My career path is far from a straight line. I have more often let my heart lead rather than my head on career decisions. People I have met over the years, or more precisely bosses I have had, have helped by always giving me a sense of freedom in my tasks, trusting and believing in me. I have avoided staying in a job where I did not feel my skills were valued.

What is your average day like in the EEA office?

An average day is when I interact across the organisation with experts seeking their input or advice into a stakeholder project I am doing. It can be either enquiring about stakeholder consultations of a report published or developing a programme for a visiting group coming to the EEA. I catch up with everyone in my team on a daily basis to sense if everything is ok. My boss is easily approachable and I speak to her every day.

Twice a month I organise a strategic communication meeting for the Communication colleagues where we share information on production, launches, press, speeches and project across the EEA. Sometimes I receive a visiting group from a university or a ministry. People from across the world contact us to ask for a visit. Usually I kick off the programme by giving a presentation about the EEA after which I am joined by a couple of experts on a specific topic that the visitors are interested in.

What do you enjoy most about your job?

I like to lead a team and see how the members complement each other’s competences.  Allowing each team member to use their full potential and develop new skills is rewarding to me.

Working in a European body and for the environment feels good. I believe the EU is the biggest peace project in the world.

What do you find most challenging about your job?

I find it challenging when it is difficult to measure the real and tangible impact of outreach or communication. It is also sometimes difficult to prioritise activities and to work within the limited resources we have available.

Sometimes we cannot avoid influences from geopolitical storms – it is hard. Europe is about working together and building bridges for everyone.

What advice would you give to a researcher who is interested in a career with the EEA or the EU more broadly?

  • Firstly, you have to be an EU national to apply to the EU institutions. At the EEA, we have 33-member countries and you have to be citizen of one of these.

    Map of the 33-member countries

  • If you see an interesting job advertised in the EU institutions or EEA, apply as many times as you want.
  • Do not give up.
  • Keep your CV updated.
  • Follow EU politics.
  • Read up on EU affairs – it will make a difference in the interview.
  • Apply for jobs in national ministries or institutions – it can sometimes be a gateway to finding a short-term contract as a seconded national expert in the EU or at EEA. Look for a job in an EU lobby organisation who could benefit from your specific research.
  • Apply for the EU Blue Book traineeships https://ec.europa.eu/stages/
  • Register to EPSO – the EU portal for jobs: https://epso.europa.eu/apply/job-offers_en

Do you have any advice for scientists wanting to communicate their research with policymakers?

Less is more. Policymakers will find your research useful if you have concrete examples on how to contribute or solve some of the challenges a policymaker faces.

Use easily understandable language in your communication material. One A4 page is a good length for anything.

Is there anything else you’d like to say or comment on?

Surround yourself every day with people who are positive and who give you energy and pull you up. Believe in yourself and in your passion for what you do. Be proud of the choices you have made and trust in those you will make. There is a reason for everything.

Editor’s Note: since this interview took place, Petra has changed positions within the European Environment Agency and  is currently working as a stakeholder relations expert 

 

August GeoRoundUp: the best of the Earth sciences from around the web

August GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major story

The south Indian state of Kerala has suffered unusually heavy monsoon rainfall this month, triggering the worst flooding the state has seen in more than a century.

Officials have reported nearly 500 deaths, while more than one million people have been evacuated to over 4,000 relief camps.

Between 1 and 19 August, the region received 758.6 milimetres of rain, 2.6 times the average for that season. In just two days (15-16 August), Kerala sustained around 270 milimetres of rainfall, the same amount of rainfall that the entire state receives in one month typically, said Roxy Mathew Koll, a climate scientist at the Indian Institute of Tropical Meteorology and the National Oceanic and Atmospheric Administration, to BBC News.

Due to the heavy downpours, rivers have overflowed, water from several dams has been released, and lethal landslides have swept away rural villages.

“Officials estimated about 6,000 miles (10,000km) of roads had been submerged or buried by landslides,” reported the Guardian. “Communications networks were also faltering, officials said, making rescue efforts harder to coordinate.”

Experts report that the event’s severity stems from many factors coming together.

For instance, a recent study led by Koll has shown that in the past 50-60 years, monsoon winds have weakened, delivering less rain on average in India. However, the distribution of rainfall is uneven, with long dry spells punctuated by heavy rainfall events. Koll’s research suggests that central India has experienced a threefold rise in the number of widespread extreme rain events during 1950-2012. In short, it doesn’t rain as often; but when it rains, it pours.

Scientists also say that increased development in the region had exacerbated the monsoon’s impact.

For example, usually when storms release heavy rainfall, much of that water is absorbed or slowed down by vegetation, soil, and other natural obstacles. However, scientists point out that “over the past 40 years Kerala has lost nearly half its forest cover, an area of 9,000 km², just under the size of Greater London, while the state’s urban areas keep growing. This means that less rainfall is being intercepted, and more water is rapidly running into overflowing streams and rivers.”

To make matters worse, increased development can also change how effectively rivers handle heavy downpours. For instance, canals and bridges can make rivers more narrow and can create sediment build-up, which slows water flow. “When there is a sudden downpour, there is not enough space for the water so it floods the surrounding area,” explains Nature.

Some experts have added that badly-timed water management practices are also partly to blame for the flood’s devastation on local communities.

“A contributing factor is that after the heavy rain, authorities began to release water from several of the state’s 44 dams, where reservoirs were close to overflowing. The neighbouring state of Tamil Nadu also purged water from its over-filled Mullaperiyar dam, which wreaked yet more havoc downstream in Kerala,” Nature adds.

While floodwaters began to recede in late August, rescue teams are still searching submerged neighborhoods to deliver aid and evacuate survivors.

What you might have missed

Water on moon confirmed

Recent research published this month suggest that there is almost certainly frozen water on the moon’s surface.

The image shows the distribution of surface ice at the Moon’s south pole (left) and north pole (right). Blue represents the ice locations, plotted over an image of the lunar surface, where the gray scale corresponds to surface temperature (darker representing colder areas and lighter shades indicating warmer zones). (Credit: NASA)

“Previous observations indirectly found possible signs of surface ice at the lunar south pole, but these could have been explained by other phenomena, such as unusually reflective lunar soil,” NASA officials said in a published statement.

Now, scientists involved with the new study claim that they’ve found definitive evidence that ice is located within craters on the moon’s north and south poles.

During daylight hours, the moon’s surface can be brutally hot, often reaching temperatures as high as 100 degrees Celsius. However, due to the moon’s axial tilt, some parts of the lunar poles don’t receive sunlight. Scientists estimate that some craters situated within these permanently dark polar regions are cold enough to sustain pockets of water-ice.

Because the moon’s poles are so dark, scientists have had a hard time studying the lunar craters. But Shuai Li, a planetary researcher at the University of Hawaii at Manoa and lead author of the study, and his colleagues tried a creative way to shed some light on shadowed craters, using data collected from India’s Chandrayaan-1 lunar probe ten years ago.

“They peered into dark craters using traces of sunlight that had bounced off crater walls,” reports the New York Times. “They analyzed the spectral data to find places where three specific wavelengths of near-infrared light were absorbed, indicating ice water.”

As of now, the researchers still aren’t sure how much ice there is, or how it found its way to the moon’s poles. But if enough accessible ice exists close to the lunar surface, the water could be used as a resource for future missions to the moon, from a source of drinking water to rocket fuel.

Mapping Earth’s winds from above

Also this month, scientists from the European Space Agency launched a satellite that will profile the world’s winds, in hopes that the data will greatly improve weather forecasts and provide insight for long-term climate research. The satellite, named Aeolus after the celestial keeper of the winds in Greek mythology, was sent to orbit from French Guiana on Wednesday 22 August.

The rocket was due to lift off on Tuesday, but the launch was postponed – ironically – due to high altitude winds,” reports BBC News.

Aeolus profiling the word’s winds (Credit: ESA)

Equipped with a Doppler wind lidar, Aeolus will send powerful laser pulses down to Earth’s atmosphere and measure how air molecules and other particles in the wind scatter the light beam.

Researchers expect that wind data from Aeolus will greatly improve current efforts to forecast storms, especially their severity over time. While scientists have many ways to measure wind behavior, current methods are unable to capture wind movement from all corners of the Earth. Aeolus will be the first mission to monitor winds across the entire globe.

Using data collected by Aeolus, experts estimate that the quality of forecasts will increase by up to 15% within the tropics, and 2-4% outside of the tropics.

“If we improve forecasts by 2%, the value for society is many billions of dollars,” said Lars Isaksen, a meteorologist at the European Centre for Medium-Range Weather Forecasts (ECMWF), to Nature.


Learn how Earth’s wind is generated and why we need to measure it. (Credit: ESA

Links we liked

The EGU story

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance! Help shape the scientific programme of the 2019 General Assembly.

Before the end of today (6 September), you can suggest:

This month we released two press releases from research published in our open access journals. Take a look at them below:

Landslides triggered by human activity on the rise

More than 50,000 people were killed by landslides around the world between 2004 and 2016, according to a new study by researchers at UK’s Sheffield University. The team, who compiled data on over 4800 fatal landslides during the 13-year period, also revealed for the first time that landslides resulting from human activity have increased over time. The research is published today in the European Geosciences Union journal Natural Hazards and Earth System Sciences.

Deadline for climate action – Act strongly before 2035 to keep warming below 2°C

If governments don’t act decisively by 2035 to fight climate change, humanity could cross a point of no return after which limiting global warming below 2°C in 2100 will be unlikely, according to a new study by scientists in the UK and the Netherlands. The research also shows the deadline to limit warming to 1.5°C has already passed, unless radical climate action is taken. The study is published today in the European Geosciences Union journal Earth System Dynamics.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

GeoTalk: To understand how ice sheets flow, look at the bedrock below

GeoTalk: To understand how ice sheets flow, look at the bedrock below

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Mathieu Morlighem, an associate professor of Earth System Science at the University of California, Irvine who uses models to better understand ongoing changes in the Cryosphere. At the General Assembly he was the recipient of a 2018 Arne Richter Award for Outstanding Early Career Scientists.  

Could you start by introducing yourself and telling us a little more about your career path so far?

Mathieu Morlighem (Credit: Mathieu Morlighem)

I am an associate professor at the University of California Irvine (UCI), in the department of Earth System Science. My current research focuses on better understanding and explaining ongoing changes in Greenland and Antarctica using numerical modelling.

I actually started glaciology by accident… I was trained as an engineer, at Ecole Centrale Paris in France, and was interested in aeronautics and space research. I contacted someone at the NASA Jet Propulsion Laboratory (JPL) in the US to do a six-month internship at the end of my master’s degree, thinking that I would be designing spacecrafts. This person was actually a famous glaciologist (Eric Rignot), which I did not know. He explained that I was knocking on the wrong door, but that he was looking for students to build a new generation ice sheet model. I decided to accept this offer and worked on developing a new ice sheet model (ISSM) from scratch.

Even though this was not what I was anticipating as a career path, I truly loved this experience. My initial six-month internship became a PhD, and I then moved to UCI as a project scientist, before getting a faculty position two years later. Looking back, I feel incredibly lucky to have seized that opportunity. I came to the right place, at the right time, surrounded by wonderful people.

This year you received an Arne Richter Award for Outstanding Early Career Scientists for your innovative research in ice-sheet modelling. Could you give us a quick summary of your work in this area?

The Earth’s ice sheets are losing mass at an increasing rate, causing sea levels to rise, and we still don’t know how quickly they could change over the coming centuries. It is a big uncertainty in sea level rise projections and the only way to reduce this uncertainty is to improve ice flow models, which would help policy makers in terms of coastal planning or choosing mitigation strategies.

I am interested in understanding the interactions of ice and climate by combining state-of-the-art numerical modelling with data collected by satellite and airplanes (remote sensing) or directly on-site (in situ).  Modelling ice sheet flow at the scale of Greenland and Antarctica remains scientifically and technically challenging. Important processes are still poorly understood or missing in models so we have a lot to do.

I have been developing the UCI/JPL Ice Sheet System Model, a new generation, open source, high-resolution, higher-order physics ice sheet model with two colleagues at the Jet Propulsion Laboratory over the past 10 years. I am still actively developing ISSM and it is the primary tool of my research.

More specifically, I am working on improving our understanding of ice sheet dynamics and the interactions between the ice and the other components of the Earth system, as well as improving current data assimilation capability to correctly initialize ice sheet models and capture current trends. My work also involves improving our knowledge of the topography of Greenland and Antarctica’s bedrock (through the development of new algorithms and datasets). Knowing the shape of the ground beneath the two ice sheets is key for understanding how an ice sheet’s grounding line (the point where floating ice meets bedrock) changes and how quickly chunks of ice will break from the sheet, also known as calving.

Steensby Glacier flows around a sharp bend in a deep canyon. (Credit: NASA/ Michael Studinger)

At the General Assembly, you presented a new, comprehensive map of Greenland’s bedrock topography beneath its ice and the surrounding ocean’s depths. What is the importance of this kind of information for scientists?

I ended up working on developing this new map because we could not make any reliable simulations with the bedrock maps that were available a few years ago: they were missing key features, such as deep fjords that extend 10s of km under the ice sheet, ridges that stabilize the retreat, underwater sills (that act as sea floor barriers) that may block warm ocean waters at depth from interacting with the ice, etc.

Subglacial bed topography is probably the most important input parameter in an ice sheet model and remains challenging to measure. The bed controls the flow of ice and its discharge into the ocean through a set of narrow valleys occupied by outlet glaciers. I am hoping that the new product that I developed, called BedMachine, will help reduce the uncertainty in numerical models, and help explain current trends.

3D view of the bed topography and ocean bathymetry of the Greenland Ice Sheet from BedMachine v3 (Credit: Peter Fretwell, BAS)

How did you and your colleagues create this map, and how does it compare to previous models?

The key ingredient in this map, is that a lot of it is based on physics instead of a simple “blind” interpolation. Bedrock elevation is measured by airborne radars, which send electromagnetic pulses into the Earth’s immediate sub-surface and collect information on how this energy is reflected back. By analyzing the echo of the electromagnetic wave, we can determine the ice thickness along the radar’s flight lines. Unfortunately, we cannot determine the topography away from these lines and the bed needs to be interpolated between these flight lines in order to provide complete maps.

During my PhD, I developed a new method to infer the bed topography beneath the ice sheets at high resolution based on the conservation of mass and optimization algorithms. Instead of relying solely on bedrock measurements, I combine them with data on ice flow speed that we get from satellite observations, how much snow falls onto the ice sheet and how much melts, as well as how quickly the ice is thinning or thickening. I then use the principle of conservation of mass to map the bed between flight lines. This method is not free of error, of course! But it does capture features that could not be detected with other existing mapping techniques.

3D view of the ocean bathymetry and ice sheet speed (yellow/red) of Greenland’s Northwest coast (Credit: Mathieu Morlighem, UCI)

What are some of the largest discoveries that have been made with this model? 

Looking at the bed topography alone, we found that many fjords beneath the ice, all around Greenland, extend for 10s and 100s of kilometers in some cases and remain below sea level. Scientists had previously thought some years ago that the glaciers would not have to retreat much to reach higher ground, subsequently avoiding additional ice melt from exposure to warmer ocean currents. However, with this new description of the bed under the ice sheet, we see that this is not true. Many glaciers will not detach from the ocean any time soon, and so the ice sheet is more vulnerable to ice melt than we thought.

More recently, a team of geologists in Denmark discovered a meteorite impact crater hidden underneath the ice sheet! I initially thought that it was an artifact of the map, but it is actually a very real feature.

More importantly maybe, this map has been developed by an ice sheet modeller, for ice sheet modellers, in order to improve the reliability of numerical simulations. There are still many places where it has to be improved, but the models are now really starting to look promising: we not only understand the variability in changes in ice dynamics and retreat all around the ice sheet thanks to this map, we are now able to model it! We still have a long way to go, but it is an exciting time to be in this field.

Interview by Olivia Trani, EGU Communications Officer

Imaggeo on Mondays: Getting involved with EGU!

Imaggeo on Mondays: Getting involved with EGU!

Today’s featured photo comes from the 2017 General Assembly. Did you enjoy this year’s 666 unique scientific sessions, 68 short courses and 294 side events? Did you know that EGU members and conference attendees can play an active role in shaping the scientific programme of the conference? It’s super easy!

You can suggest a session (with conveners and description), and/or modifications to the existing skeleton programme sessions. So, if you’ve got a session in mind for the 2019 conference, be it oral, poster or PICO, be sure to submit it before 6 September. Have a great idea for a Union Symposium or Great Debate? Make sure to submit your proposal by this Wednesday, 15 August!

But helping us prepare the next General Assembly is not the only way you can have a say in EGU activities over the coming weeks. The EGU’s Autumn Elections are coming up too and we need your help to identify suitable candidates for EGU’s next Treasurer. Until 15 September you can nominate candidates for the position. Think you’ve got it takes to have a go at the role? Then you are also welcome to nominate yourself!

Do you need funding to organise a training school in the Earth, planetary or space sciences? EGU training schools offer early career scientists specialist training opportunities they do not normally have access to in their home institutions. But hurry and submit your application before the deadline this week, 15 August.

In addition, we welcome proposals for conferences on solar system and planetary processes, as well as on biochemical processes in the Earth system, in line with two new EGU conference series we are launching that are named in honour of two female scientists. The Angioletta Corradini and Mary Anning conferences are to be held every two years with their first editions in 2019 or 2020. The deadline to submit proposals is also 15 August.

For other EGU related news, why not visit our news pages, or catch up on the latest via our monthly newsletter?

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.