GeoLog

Cryospheric Sciences

Imaggeo on Mondays: The glacier surviving climate change

Imaggeo on Mondays: The glacier surviving climate change

Human impacts on the climate are nowadays clearly discernible, and the changes to our climate that previously happened in geologic time scales are currently happening during the span of a human lifetime. Our planet is warming and temperature today is now more than 1°C higher than it was in the pre-industrial world and rises by about 0.15-0.2°C on average each decade. The dramatic effects of this rapid climate change are appearing right now: the increasing temperatures are melting glaciers and sea ice all over the world, shifting precipitation patterns and inducing extreme weather events, destroying habitats and forcing animals and people to migrate.

In this climate changing system, glaciers and sea ice represent very fragile elements. Glacier ice occupies about 10 percent of the world’s total land area and stores around 70 percent of the world’s total freshwater. When glaciers melt, freshwater is lost and flows into the seas raising the average global sea level. Since the surface of ice reflects sunlight, and thus heat, ice loss intensifies global warming. Despite this global glacier-melting trend, there are a few glaciers that are growing, one of which is the Perito Moreno Glacier. Scientists are not exactly sure why this glacier is advancing instead of retreating, but some hypothesize that precipitation shifts due to climate change or the glacier’s steep angle could be responsible for the phenomenon.

Located in southwest Santa Cruz Province of Argentina, the Perito Moreno Glacier is one of the region’s many glaciers, which collectively cover about half of the surface of Los Glaciares National Park, a UNESCO World Heritage Site. The glacier belongs to the Southern Patagonian Ice Field, which is the third largest freshwater reserve on the planet after the Antarctic and Greenland ice sheets. Perito Moreno Glacier descends from about 2100 metres in the Andes Mountains, down into the water of Lago Argentino at about 180 metres above sea level. It stretches for 30 km in length and 5 km in width (roughly equivalent in size to the Belgian capital Brussels) and rises 70 meters above the water surface of the lake. The glacier was formed during the last ice age, and is estimated to be 18,000 years old.

The current picture captures the front of the Perito Moreno Glacier from the Lago Argentino bank. By walking the last kilometres of the road which follows the lake shore from the entrance of the park to the main viewpoint, suddenly from between the green of the forest and the turquoise of the lake your sight is captured by the glacier: the white sleeping giant which lays quietly between the sides of the mountains. Coming closer and closer you start to feel the fresh air coming from the mouth of the glacier and hear its noisy breathing produced by the incessant ice cracking. From time to time you can also witness its mumbling, caused by calving ice slabs that fall into the water. The beauty of Perito Moreno Glacier is impressive, however its resistance against climate change is much more incredible. How long will this glacier still be able to resist?

By Magdalena Stefanova Vassileva, GFZ German Research Centre for Geosciences, Germany

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: A walk at the glacier

Imaggeo on Mondays: A walk at the glacier

In 2012 I had the opportunity to help lead a teaching excursion to the Norwegian archipelago Svalbard. On this trip, geography students from the Ruhr-University of Bochum in Germany had the chance to learn more about the nature of this fascinating island.

In addition to Svalbard’s climatology and the wildlife, the region’s glaciology and geomorphology were the main topics we focused on. For example, we walked to the glacier ice, measured the glacier drainage flow and assigned various glacial debris accumulations (also known as moraines) to their genesis. Furthermore, PhD students from the local university showed us field experiments on how the region’s permafrost melts and wet soils slide downhill (also known as solifluction). We could see the giant glacier tongues with ice fronts at the sea level on a boat trip to the old coal mining town of Longyearbyen. The debris cover and the incredibly large medial moraine (debris that collects when two glaciers merge together) of the pictured glacier particularly impressed us.

We were astonished when the two polar bears came into sight after a short moment. Of course, we had secretly hoped to see polar bears on this excursion, but when it actually happened, not only the glaciers and the whole landscape seemed bigger, but also the wild nature of Svalbard got much more impressive. For me, my colleague André and my students this experience will be unforgettable.

By A. Martina Grudzielanek, Ruhr-University of Bochum, Germany

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

September GeoRoundUp: the best of the Earth sciences from around the web

September GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major stories

Latest IPCC report puts the oceans and cryosphere in focus

Last month the United Nations’ Intergovernmental Panel on Climate Change (IPCC) released a special report that details the current status of the oceans and icy regions of the planet, and assesses how these parts of the Earth will fare as the climate changes. The Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC for short) also projects how future changes to Earth’s oceans and ice will impact the global population.

“The open sea, the Arctic, the Antarctic and the high mountains may seem far away to many people,” said Hoesung Lee, Chair of the IPCC. “But we depend on them and are influenced by them directly and indirectly in many ways – for weather and climate, for food and water, for energy, trade, transport, recreation and tourism, for health and wellbeing, for culture and identity.”

The 1,170-page report is packed with scientific details that illustrate how the environment is responding to climate change and what our world may likely look like under different carbon emission scenarios. We’ve listed just a few of the report’s findings here:

  • “Small glaciers found in high mountain environments are projected to lose more than 80% of their current ice mass by 2100 under high emission scenarios.”
  • “Even if global warming is limited to well below 2°C, around 25% of the near-surface (3-4 meter depth) permafrost will thaw by 2100.”
  • “While sea level has risen globally by around 15 cm during the 20th century, it is currently rising more than twice as fast – 3.6 mm per year – and accelerating.”
  • “Sea level rise will increase the frequency of extreme sea level events, which occur for example during high tides and intense storms. Some island nations are likely to become uninhabitable due to climate-related ocean and cryosphere change.”
  • “Marine heatwaves have doubled in frequency since 1982 and are increasing in intensity.”

The key message of SROCC is that the world’s oceans are becoming warmer, more acidic and less productive, while melting glaciers and ice sheets are causing the sea level to rise. While we are already experiencing the consequences of these environmental changes, their future severity and impact on society is dependent on how much we reduce our greenhouse gas emissions, protect and restore ecosystems, manage our natural resource use, and plan for related risks.

Want to learn more about SROCC? You can check out Carbon Brief’s explainer piece that delves further into the details.

Hurricane-heavy September

The Atlantic hurricane season is usually the most active during the month of September, and this year several powerful cyclones have inflicted heavy damage on a number of coastal communities.

Hurricane Dorian destruction in Bahamas on September 2, 2019. (U.S. Coast Guard photo courtesy of Coast Guard Air Station Clearwater)

Last month, Hurricane Dorian broke records as the strongest cyclone of the season so far, and the second strongest Atlantic hurricane on record, with sustained winds reaching 300 km an hour. In its early stages, Dorian hit the Windward Islands and the US Virgin Islands, but it made the biggest impact on the Bahamas as a Category 5 hurricane. For more than 36 hours, the storm slowly dragged across the Great Abaco and Grand Bahama islands, unleashing severe wind, rain and storm surge. The American Red Cross reported that more than 13,000 houses (nearly half of the islands’ residences) were destroyed as a result. The official death toll across the country is 56, and at least 600 people are still reported missing as of 27 September.

Another notable September storm includes Tropical Storm Imelda. While Imelda’s winds were relatively slow (65 km an hour), the storm was the seventh-wettest storm on record in the United States, releasing more than a metre of rain onto southeast Texas. At least two people died from the event, and more than 1,000 high-water rescues and evacuations were made.

Hurricane Lorenzo is the latest storm to catch media attention. The storm reached Category 5 status in the central Atlantic on 28 September and was listed as the strongest hurricane on record this far north and east in the Atlantic basin. The US National Hurricane Center has reported that the storm, now a Category 1 hurricane, is passing through Portugal’s Azores Islands and is projected to make its way north to Ireland and the UK by the end of the week. While the storm’s intensity has weakened, the hurricane is still very dangerous. In the Azores Islands, Ireland and the UK, local authorities and residents have been preparing for severe weather conditions, including heavy rain and strong wind.

This graphic shows an approximate representation of coastal areas under a hurricane warning (red), hurricane watch (pink), tropical storm warning (blue) and tropical storm watch (yellow). The orange circle indicates the current position of the center of the tropical cyclone. The black line, when selected, and dots show the National Hurricane Center (NHC) forecast track of the center at the times indicated. (Credit: NOAA National Hurricane Center)

Many scientists estimate that, as the climate changes, hurricanes and storms will likely be slower, wetter and more intense.

What you might have missed 

Is ‘The Blob’ back? 

Last month news outlets have reported that a large expanse of the northeast Pacific Ocean has been experiencing unusually warm temperatures, in some places as much as 3°C higher than average records. Stretching from the Gulf of Alaska to the Hawaiian Islands, the marine heatwave is currently the second largest on record in this region in the last 40 years.

The US National Oceanic & Atmospheric Administration noted that the current heatwave resembles the early stages of ‘The Blob,’ a massive heatwave that first formed in 2014 and persisted for three years. This earlier heatwave was connected to several ecological disturbances, including large harmful algal blooms, whale entanglements, coral bleaching, sea lion malnourishment, and many fishery disasters. Scientists fear that if this new heatwave does not dissipate soon, the event could lead to similar consequences.

Sea surface temperature anomaly maps show temperatures above normal in orange and red. (Credit: NOAA)

An icy expedition

Also last month, an international team of polar scientists have launched the largest Arctic research expedition in history. On 20 September, the German research vessel Polarstern set off on a journey to the Arctic, where it will spend an entire year trapped in sea ice, allowing researchers to observe the region’s climate system. The project, known as MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate), will involve more than 300 scientists from 19 countries.

The vessel is expected to move with the natural ice drift towards the Atlantic as the year progresses, collecting valuable information on the Arctic atmosphere, sea ice, ocean, ecosystems and biogeochemistry. “We will go and do science wherever the ice might carry us,” said chief scientist Markus Rex, an atmospheric scientist at the Alfred Wegener Institute, to Nature News & Comment. Researchers hope that the data will give an updated comprehensive look into the current state of the Arctic, allowing climate models to make better estimations of the region’s future.

Other noteworthy stories

The EGU story

This month, we have launched a short survey for EGU members to provide input on what they value from EGU, the results of which will help ensure that we remain responsive to what our members want. This is particularly important in a member-led organisation like the EGU. If you are an EGU member, we’d ask you to take 5-10 minutes to give feedback on EGU and its activities.

In General Assembly related news, we have opened applications for the third edition of our Artists in Residence programme. The programme is most attractive for scientist-artists, especially those already familiar with, and interested in, the EGU General Assembly. Applications are accepted until 1 December.

Finally, a note from the EGU Executive Secretary Philippe Courtial: “After 8 successful years at the EGU office, EGU Media and Communications Manager Bárbara Ferreira has decided to give a new orientation to her career. We would like to thank her for her tireless efforts and we wish her all the best for her future career.”

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

July GeoRoundUp: the best of the Earth sciences from around the web

July GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major story

The world soaks up the sun

This summer our planet experienced the hottest June in recorded history, with the average global temperature reaching 16.4 °C, and July is on track to becoming the hottest month ever measured on Earth. And if you either live in or have been visiting Europe over the last few weeks, it sure feels like record-breaking heat.

In both June and July, several regions in Europe reached all-time temperature highs as warm air from northern Africa made its way through the continent. A rapid analysis done by researchers affiliated with the World Weather Attribution Network shows that human-caused climate change made the June heatwave at least five times more likely to happen. Furthermore, the scientists say in their report that “every heat wave occurring in Europe today is made more likely and more intense by human-induced climate change.”

Heatwaves this intense can put human health at risk and even be deadly in severe cases. A death toll reported that extreme heat Europe in the summer of 2003 led to more than 70,000 deaths throughout the continent.

The heatwave is now advancing towards Greenland, scientists report, and increased heat in the Arctic will likely lead to “another major peak in melt area,” said Twila Moon, a research scientist with the National Snow and Ice Data Center (NSIDC) in Colorado, US, to Live Science.

Simultaneous to the heatwave, a new study has reported that Earth’s current global warming is the only worldwide climate event to have happened in the last 2,000 years. While there have been notable climate events within the last few centuries, such as dramatic temperature changes from volcanic eruptions, the impact of these events were more regional rather than universal. In contrast, the study finds that modern climate change has affected 98 percent of the world.  “Absolutely nothing resembling modern-day global warming has happened on Earth for at least the past 2,000 years,” said the Atlantic.

50 years since one small step

20 July 2019 also marked the 50th anniversary of the first human steps on the Moon. In 1969, NASA astronauts Neil Armstrong and Buzz Aldrin landed on the Moon’s surface as part of the Apollo 11 Mission, revolutionising our understanding of our closest cosmic neighbor. For the 21 hours and 36 minutes on the lunar landscape, Armstrong and Aldrin reported field observations, installed instruments for multiple experiments, and gathered more than 20 kilograms of rock and dust samples.

Since then, scientists have made several discoveries from the data collected during the Apollo 11 Mission. For example, the rocks brought back from the Moon were determined to be about 4.5 billion years old, not much older than the Earth. Geoscientists also found that rocks from the Moon were very similar chemically to those on Earth, suggesting that the two bodies could have evolved in tandem from a large impact event, a leading theory also known as the giant-impact hypothesis.

Lunar Module pilot Buzz Aldrin photographed during the Apollo 11 extravehicular activity on the moon. Aldrin had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). Credit: NASA

While operational, the lunar seismometers installed by Armstrong and Aldrin detected ‘moonquakes’ and revealed that the Moon has a relatively small solid core and a thicker crust compared to the Earths’ interior.

Armstrong and Aldrin also set up a Laser Ranging Retroreflector to precisely measure how close the Moon is to the Earth. The retroreflector is still operational to this day, and the data obtained from the experiment shows that the Moon is almost literally inching away from the Earth at 3.8 centimetres (1.5 inches) each year on average.

These examples are just some of the discoveries made following this mission, and scientists are still studying the samples and data obtained 50 years ago to learn more about the Moon, the Earth and the solar system.

“One of the biggest misconceptions is that the Apollo samples aren’t being studied anymore, and that the Apollo samples only tell us about the moon,” says Ryan Zeigler, Apollo sample curator at the Johnson Space Center, in Science News.

What you might have missed

A new study published in July reported that tidewater glaciers, ones that flow from land to sea, could be melting much faster than previously thought. By analysing detailed measurements collected through radar, sonar and time-lapse photography, a team of researchers found that one Alaskan tidewater glacier is releasing a surprising meltwater from below the surface of the ocean.

“The melt rates that we measured were about 10 to 100 times larger than what theory predicted,” says lead study author David A. Sutherland, an oceanographer at the University of Oregon, in Scientific American.

The new findings could help scientists better understand how glaciers respond to global warming and how such glacial melt contributes to sea level rise and impacts local ecosystems.

Researchers studying LeConte Glacier in Alaska have found that its melt rate was 10 to 100 times larger than expected. Credit: US Forest Service, Carey Case

Other noteworthy stories

The EGU story

In July we are advertised another vacancy at the EGU Executive Office in Munich, Germany: EGU Communications Officer. The successful candidate will manage the EGU blogs and social media channels and be the office contact point for early career scientists.

Additionally, we are providing an EGU member with the opportunity to visit Brussels and work alongside a Member of the European Parliament (MEP) for a day. The pairing scheme will enable the selected EGU member to experience the daily work of an MEP, learn more about the role of science in policymaking, and potentially provide expertise on a science-policy issue. Interested EGU members should apply by 6 September.

Also in July, we have opened the call for candidates for EGU Union President, General Secretary and Division Presidents: if you’d like to nominate yourself or propose a candidate, you can do so by 15 September.

Finally, if you’d like to apply for financial support from the EGU to organise a meeting, make sure to submit an application by 15 August. This is also the deadline to submit proposals for Union Symposia and Great Debates at the EGU General Assembly 2020. The deadline for scientific sessions and short courses is 5 September.