GeoLog

Atmospheric Sciences

Imaggeo on Mondays: Refuge in a cloudscape

Imaggeo on Mondays: Refuge in a cloudscape

The action of glaciers combined with the structure of the rock to form this little platform, probably once a small lake enclosed between a moraine at the mountain side and the ice in the valley.

Now it has become a green haven in the mountain landscape, a perfect place for an alp. In the Alps, stratus clouds opening up on autumn mornings often create gorgeous light display.

That day, some of the first light landed on this exact spot, while the mountain shadows still covered the valley bottom.

Description by Julien Seguinot, as it first appeared on imaggeo.egu.eu

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submittheir photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

GeoTalk: How will large Icelandic eruptions affect us and our environment?

GeoTalk: How will large Icelandic eruptions affect us and our environment?

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Anja Schmidt, an interdisciplinary researcher at the University of Cambridge who draws from atmospheric science, climate modelling, and volcanology to better understand the environmental impact of volcanic eruptions. She is also the winner of a 2018 Arne Richter Award for Outstanding Early Career Scientists. You can find her on twitter at @volcanofile. 

Thank you for talking to us today! Could you introduce yourself and tell us a little more about your career path so far?

I was born and raised in Leipzig, Germany. I started my career completing an apprenticeship as an IT system engineer with the engineering company Siemens. I then decided to combine my interests in geology and IT by studying geology and palaeontology (with minors in Computing/IT and Geophysics) at the University of Leipzig in Germany. As part of my degree programme, I also studied at the University of Leeds’ School of Earth and Environment as an exchange student. I liked studying there so much I ended up returning to Leeds for a PhD.

My PhD on the atmospheric and environmental impacts of tropospheric volcanic aerosol again combined my interests in computing and volcanology, although I had to educate myself in atmospheric physics and chemistry, which wasn’t easy to begin with. However, I was embedded in a diverse,   supportive research group with excellent supervision, which eased the transition from being a geologist to becoming a cross between an atmospheric scientist and a volcanologist.

Initially, being neither one nor the other made me nervous. My supervisors and mentors all had rather straightforward career paths, whereas I was thought of as an atmospheric scientist when I presented my research in front of volcanologists and as a volcanologist when I presented to atmospheric scientists.

After my PhD, I spent just under 2 years at one post-doc before securing an independent research fellowship at the University of Leeds. The first year of total independence and responsibility as principle investigator was very challenging, but after a while I began to appreciate the benefits of the situation. I also really started to embrace the fact that I would always sit between the disciplines. I spent my summers in the United States at the National Centre for Atmospheric Research, helping them to build up their capability to simulate volcanic eruptions in their climate model. These research visits had a major impact on my career as they generated a lot of new research ideas, opened up opportunities and strengthened my network of collaborators greatly.

I considered myself settled when, shortly before the end of my fellowship, a lectureship came up. It had the word ‘interdisciplinary’ in its title and I simply couldn’t resist. Since September 2017, I have been an interdisciplinary lecturer at the University of Cambridge in the UK.

At this year’s General Assembly, you will receive an Arne Richter Award for Outstanding Early Career Scientists for your work on the environmental impacts of volcanic eruptions. What brought you to study this particular field?

I have always been fascinated by volcanic eruptions, but my first active volcano viewing wasn’t until college, where I had to chance to travel to Stromboli, a volcanic island off the coast of Sicily. While studying at the University of Leipzig, I used every opportunity to join field trips to volcanoes. I ended up spending 10 weeks in Naples, Italy to work with Giovanni Chiodini, a researcher from the National Institute of Geophysics and Volcanology in Rome, and his team on CO2 degassing from soils at the Solfatara volcano. Later on I was awarded a scholarship from the University of Leeds, which allowed me to delve deeper into the subject, although I ended up learning as much about atmospheric science and computer modelling as about volcanology.

Anja in front of the 2010 Fimmvörðuháls eruption in Iceland. Fimmvörðuháls was the pre-cursor eruption to Eyjafjallajökull. Credit: Anja Schmidt.

My PhD work focused on Icelandic volcanism and its potential effects on the atmosphere as well as society. In 2010, during the 3rd year of my PhD studies, Eyjafjallajökull erupted in Iceland. While an eruption like this and its impacts did not really come as a surprise to a volcanologist, I personally considered it a game-changer for my career. I had an opportunity to witness the pre-cursor eruption in Iceland and present my research. Within a matter of months, interest in my work increased. I even started to advise UK government officials on the risks and hazards of volcanic eruptions in Iceland.

In August 2014, an effusive eruption started at the Holuhraun lava field in Iceland. To this date, analysing field measurements and satellite data of the site and modelling simulations keeps me busy. Many of my senior colleagues told me that there is one event or eruption that defined their careers; for me that’s the 2014-2015 Holuhraun eruption.

At the General Assembly you also plan to talk about your work on volcanic sulphur emissions and how these emissions can alter our atmosphere as well as potentially affect human health in Europe. Could you tell us a little more about this research?

On average, there is one volcanic eruption every three to five years in Iceland. The geological record in Iceland also reveals that sulphur-rich and long-lasting volcanic eruptions, similar to Iceland’s Laki eruption in 1783-1784, occur once every 200 to 500 years. Sulphur dioxide and sulphate particles produced by volcanic eruptions can have detrimental effects on air quality and human health. Historical records from the 1780s imply that the Laki eruption caused severe environmental stress and contributed to spikes in mortality rates far beyond the shores of Iceland. While these long-lasting eruptions occur much less frequently than more typical short-duration explosive eruptions (like Grímsvötn 2011), they are classified as ‘high-impact’ events.

I was always interested in investigating how a similar magnitude eruption like Laki’s would affect modern society. By combining a global aerosol microphysics model with volcanological datasets and epidemiological evidence, I led a cross-disciplinary study to quantify the impact that a future Laki-type eruption would have on air quality and human health in Europe today.

Our work suggests that such an eruption could significantly degrade air quality over Europe for up to 12 months, effectively doubling the concentrations of small-sized airborne particles in the atmosphere during the first three months of the eruption. Drawing from the epidemiological literature on human response to air pollution, I showed that up to 140,000 cardiopulmonary fatalities could occur across Europe due to such an eruption, a figure that exceeds the annual mortality from seasonal influenza in Europe.

In January 2012, this discovery was used by the UK government as contributing evidence for including large-magnitude effusive Icelandic eruptions to the UK National Risk Register. This will help to mitigate the societal impacts of future eruptions through contingency planning.

Anja and her colleague Evgenia Ilyinskaya from the University of Leeds carrying out measurements during the 2014-2015 Holuhraun eruption in Iceland. Credit: Njáll Fannar Reynisson.

Since then, we have done more work on smaller-magnitude effusive eruptions such as the 2014-2015 Holuhraun eruption in Iceland, showing that this eruption resulted in short-lived volcanic air pollution episodes across central and northern Europe and longer-lasting and more complex pollution episodes in Iceland itself.

Something that you’ve touched on throughout this interview are the challenges of ‘sitting between the disciplines.’ From your experience, what has helped you address these issues throughout your career?

Indeed, it is often challenging to sit between the disciplines, but it can also be very rewarding. It helps to ignore boundaries between disciplines. I also tend to read a lot and very widely to get an idea of key concepts and issues in specific fields. In addition, I think collaboration and a willingness to challenge yourself are key if you want to make progress and break traditional disciplinary boundaries.

Anja, thank you so much for speaking to us about your research and career path. Before I let you go, what advice do you have for aspiring scientists? 

Be curious and never hesitate to ask a lot questions, no matter how ‘stupid’ or basic they may seem to you. The latter is particularly true when it comes to cross-disciplinary collaboration and work.  I also didn’t always follow the conventional route most people would advise you to take to achieve something. Never be afraid to take a chance or work with some level of risk.

I also have two or three close mentors that I can approach whenever I require some advice or feedback. No matter what career stage you are at, I think it almost always helps to get an outsider’s perspective and insight not only when there are problems.

Finally, never forget to have fun. Some of my best pieces of work were done when I was surrounded by collaborators that are really fun to be with and work with!

Interview by Olivia Trani, EGU Communications Officer.

References: 

Ilyinskaya, E., et al.: Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland), Earth and Planetary Science Letters, 472, 309-322, 2017

Schmidt, A., et al.: Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014–2015 flood lava eruption at Bárðarbunga (Iceland)Journal of Geophysical Research: Atmospheres12097399757, 2015

Schmidt, et al.: Excess mortality in Europe following a future Laki-style Icelandic eruption, Proceedings of the National Academy of Sciences, 108(38), 15710-15715, 2011

February GeoRoundUp: the best of the Earth sciences from across the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major stories

The biggest story in Europe right now is the bone-chilling cold snap sweeping across the continent. This so-called ‘Beast from the East’ sharply contrasts with the Arctic’s concerningly warm weather. Scientists believe these warming events are related to the Arctic’s winter sea ice decline, which makes the region more vulnerable to warm intrusions from storms.

While a cold front covered most of Europe, warm air invaded the Arctic last week.
Credit: Climate Reanalyzer

However, we also wanted to highlight a couple of big stories from earlier in the month that may be less fresh in your memory.

Falcon Heavy

This month Elon Musk, the founder, CEO and lead designer of SpaceX, captivated a global audience when his company successfully launched the Falcon Heavy rocket from the Kennedy Space Center in Florida, USA.

The numbers associated with the rocket are staggering. SpaceX reported that the spacecraft’s 27 engines generated enough power to lift off 18 Boeing 747 ‘Jumbo Jets.’ The Falcon Heavy is currently the most powerful launch vehicle in operation and second only to the Saturn V rocket, which dispatched astronauts to the moon in the 1960s and 70s. The Guardian reports that the rocket “is designed to deliver a maximum payload to low-Earth orbit of 64 tonnes – the equivalent of putting five London double-decker buses in space.” Despite the rocket’s immense payload capacity, Musk opted to send just one passenger, a spacesuit-donned mannequin aptly named ‘Starman.’ The dummy sits aboard a cherry red Tesla Roadster with David Bowie tunes blasting from the speakers.

While Starman embarked on its celestial journey, two of the rocket’s three boosters successfully returned to the space centre unscathed via controlled burns. The third booster failed to land on its designated drone ship and instead crashed into the Atlantic Ocean at nearly 500 kilometers per hour.

SpaceX currently plans to fine-tune the Falcon Heavy and work on its successor, the Big Falcon Rocket, which Musk hopes could be used to shuttle humans to the Moon, Mars, or across the world in record time.

In a news report, BBC News listed some of the other possibilities that SpaceX could pursue with a rocket this size. Two of which include:

  • “Large batches of satellites, such as those for Musk’s proposed constellation of thousands of spacecraft to deliver broadband across the globe.
  • Bigger, more capable robots to go to the surface of Mars, or to visit the outer planets such as Jupiter and Saturn, and their moons.”

And what’s in store for Starman? Scientists estimate that the Tesla Roadster will orbit around the sun for millions of years, likely making close encounters with Earth, Venus, and Mars. They also report a small chance that the Tesla could face a planetary collision with either Earth (6 percent chance) or Venus (2.5 percent chance) in the next million years. However, even if the Tesla can escape collisions, it won’t be able to avoid radiation damage.

Cape Town’s water crisis

On 13 February South Africa declared Cape Town’s current water crisis a national disaster. Plagued by a three-year drought, the coastal city has been close to running out of water for some time, but this new announcement from government officials comes after reevaluating the “magnitude and severity” of drought. This reclassification means that the national government will now manage the crisis and relief efforts.

The declaration came a few weeks following Cape Town’s new water conservation measures, which limits individual water consumption to 50 litres a day. For comparison, residents from the UK use on average 150 litres of water per person daily. US citizens each consume on average more than 300 litres of water per day.

These new regulations, coupled with recent water use reductions and minor rainfall, will now push ’Day Zero,’ when Cape Town essentially runs out of water, from 12 April to 9 July. Day Zero more specifically marks the date in which the city’s primary water source, six feeder dams, is expected to drop below 13.5 percent capacity. At this level, the dams would be considered unusable and the government would cut off homes and businesses of tap water. Instead, the city’s four million residents would be forced to collect daily 25-litre water rations at one of the 200 designated pick-up points. If the city reaches this day, it would become the first modern city to run out of municipal water.

Scientists believe that Cape Town’s severe drought, considered the worst in over a century, is likely a result of Earth’s changing climate. In 2007 the Department of Water Affairs and Forestry warned that the area would likely experience hotter and drier seasons with more irregular rainfall due to climate change. However, experts note that the drought alone is not to blame for the national disaster. Poor water infrastructure, reluctance from the government to act on drought warnings, and inequality are also substantially responsible for the current crisis.

“What is now certain is that Cape Town will become a test case for what happens when climate change, extreme inequality, and partisan political dysfunction collide,” reports The Atlantic.

A dried up section of the Theewaterskloof dam near Cape Town, South Africa, on January 20, 2018. Credit: The Atlantic

In order to ‘Defeat Day Zero’ Cape Town officials hope to limit city water consumption to 450 million litres per day, but as of now residents use on average 526 million litres of water. In addition to promoting water conservation techniques, the city is also rushing to construct desalination plants, implement wastewater recycling, and drill into aquifers within the region. The latter initiative deeply concerns ecologists, who argue that depleting these groundwater resources would endanger dozens of endemic species and threaten the ecosystems unique diversity.

Other news stories of note

The EGU story

Early this month we issued a press release on research published in one of our open access journals. The new study reveals novel insights into Earth’s ozone layer.

“The ozone layer – which protects us from harmful ultraviolet radiation – is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes, new research has found. The new result, published today in the European Geosciences Union journal Atmospheric Chemistry and Physics, finds that the bottom part of the ozone layer at more populated latitudes is not recovering. The cause is currently unknown.”

This month also saw the online release of the 2018 General Assembly scientific programme, which lists nearly 1000 special scientific and interdisciplinary events as well as over 17,000 oral, PICO and poster sessions taking place at this year’s meeting. The EGU issued a statement stressing that all scientific presentations at the General Assembly have equal importance, independent of format.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Get involved: become an early career scientist representative

Get involved: become an early career scientist representative

Early career scientists (ECS) make up a significant proportion of the EGU membership and it’s important to us that your voices get heard. To make sure that happens, each division appoints an early career scientists representative: the vital link between the Union and the ECS membership.

After tenure of two or four years, a few of the current ECS Representatives are stepping down from their post at the upcoming General Assembly. That means a handful of divisions are on the hunt for new representatives:

If you are looking for an opportunity to become more involved with the Union, here is your chance! Read on to discover what it takes to be an early career scientists representative.

What is involved?

The ECS representatives gather feedback from students and early career researchers, so that we can take action to improve our early career scientists activities at the EGU General Assembly and maintain our support for early career scientists throughout the year.

ECS Representatives meet virtually (roughly) every quarter and in person at the General Assembly in April. During the meetings issues such as future initiatives, how to get more of the ECS membership involved with the Union and how ECS activities can be improved, are discussed. The representatives are also heavily involved in the running of ECS-specific activities at the General Assembly, such as the icebreaker, ECS Forum and the ECS Lounge.

Within each scientific division, representatives can also take on a variety of tasks, according to their areas of expertise and interest. These can include (but aren’t limited to): organising events for early career scientists at our annual General Assembly, outreach to early career scientists and the wider public through social media or a division blog and much more.

To get more of a feel for what is involved, read this blog post by the outgoing Geodesy Division ECS representative, Roelof Rietbroek, who gives an insight into his experiences while in the role.

As well as giving you the platform to interact with a large network of researchers in your field, being an early career scientists representative is a great opportunity to build on your communications skills, boost your CV and influence the activities of Europe’s largest geoscientific association.

If you think you’ve got what it takes to be the next early career scientists representative for your division, or have any questions about getting involved in the Union, please contact the EGU Communications Officer at networking@egu.eu.

Application deadlines vary from divisions to division, but new representatives will be appointed before or during the upcoming General Assembly in Vienna (08-13 April). We recommend you get in touch with us ASAP if you are interested in applying for any of the vacancies. You can also keep in touch with all ECS-specific news from your division by signing up to the mailing list.  For more details about how ECS representatives are appointed and the internal structure of individual divisions take a look at the website.

EGU 2018 will take place from 08 to 13 April 2017 in Vienna, Austria. For more information on the General Assembly, see the EGU 2018 website and follow us on Twitter (#EGU18 is the official conference hashtag) and Facebook.