GeoLog

Atmospheric Sciences

Geosciences Column: How erupting African volcanoes impact the Amazon’s atmosphere

Geosciences Column: How erupting African volcanoes impact the Amazon’s atmosphere

When volcanoes erupt, they can release into the atmosphere a number of different gases initially stored in their magma, such as carbon dioxide, hydrogen sulfide, and sulfur dioxide. These kinds of gases can have a big influence on Earth’s atmosphere, even at distances hundreds to thousands of kilometres away.

A team of researchers have found evidence that sulfur emissions from volcanic eruptions in Africa can be observed as far as South America, even creating an impact on the Amazon rainforest’s atmosphere. The results of their study were published last year in the EGU journal Atmospheric Chemistry and Physics.

Amazon Tall Tower Observatory based in the Amazon rainforest of Brazil (Credit: Jsaturno via Wikimedia Commons)

In September 2014, the Amazon rainforest’s atmosphere experienced an unusually sharp spike in the concentration of sulfate aerosols. During this period, the Amazon Tall Tower Observatory (ATTO) based in Brazil reported levels of sulfate never recorded before in the Amazon Basin.

Sulfate aerosols are particles that take form naturally from sulfur dioxide compounds in the atmosphere. When sulfate aerosols spread throughout the atmosphere, the particles often get in the way of the sun’s rays, reflecting the sunlight’s energy back to space. These aerosols can also help clouds take shape. Through these processes, the particles can create a cooling effect on Earth’s climate. Sulfate aerosols can also facilitate chemical reactions that degrade Earth’s ozone layer.

Fossil fuel and biomass burning have been known cause an increase in atmospheric sulfate, but researchers involved in the study found that neither human activity increased the level of sulfate in the atmosphere significantly. Instead, they examined whether a volcanic eruption could be responsible.

Scientists have suggested for some time that sulfur emissions in the Amazon could come from African volcanoes, but until now they’ve lacked proof to properly justify this idea.

Edited Landsat 8 image of the volcanoes Nyamuragira and Nyiragongo in Congo near the city of Goma. (Credit: Stuart Rankin via flickr, NASA Earth Observatory images by Jesse Allen, using Landsat data from the U.S. Geological Survey.

However, in this study the research team involved caught volcanic pair in the act. By analysing satellite images and aerosol measurements, the researchers found evidence that in 2014, emissions from the neighboring Nyiragongo-Nyamuragira volcano complex in the Democratic Republic of the Congo, central Africa, increased the level of sulfate particles in the Amazon rainforest’s atmosphere.

Satellite observations revealed that volcanoes experienced two explosive events in September 2014, releasing sulfur emissions into the atmosphere. During that year, the volcanic complex was reportedly subject to frequent eruptive events, sending on average 14,400 tonnes of sulfur dioxide into the atmosphere a day during such occasions. This amount of gas would weigh more than London’s supertall Shard skyscraper.

Map of SO2 plumes with VCD > 2.5 × 1014 molecules cm−2 color-coded by date of observation. The 15-day forward trajectories started at 4 km (above mean sea level, a.m.s.l.) at four locations within the plume detected on 13 September 2014 (light blue) are indicated by black lines with markers at 24 h intervals. (Credit: Jorge Saturno et al.)

The images further show that these emissions were transported across the South Atlantic Ocean to South America. The sulfate particles created from the emissions were then eventually picked up by an airborne atmospheric survey campaign and the ATTO in the Amazon.

The researchers of the study suggest that these observations indicate that African volcanoes can have an effect on the Amazon Basin’s atmosphere, though more research is needed to understand the full extent of this impact.

By Olivia Trani, EGU Communications Officer

References and further reading

Volcanic gases can be harmful to health, vegetation and infrastructure. Volcano Hazards Program. USGS.

Aerosols and Incoming Sunlight (Direct Effects). NASA Earth Observatory

Saturno, J., Ditas, F., Penning de Vries, M., Holanda, B. A., Pöhlker, M. L., Carbone, S., Walter, D., Bobrowski, N., Brito, J., Chi, X., Gutmann, A., Hrabe de Angelis, I., Machado, L. A. T., Moran-Zuloaga, D., Rüdiger, J., Schneider, J., Schulz, C., Wang, Q., Wendisch, M., Artaxo, P., Wagner, T., Pöschl, U., Andreae, M. O. and Pöhlker, C.: African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest, Atmospheric Chemistry and Physics, 18(14), 10391–10405, doi:10.5194/acp-18-10391-2018, 2018.

Imaggeo on Mondays: Our QUEST for innovative tools to understand changing environments and climates

Imaggeo on Mondays: Our QUEST for innovative tools to understand changing environments and climates

The photo shown here shows typical sampling work underground. You can see Ola Kwiecien and Cinthya Nava Fernandez, researchers at Ruhr University Bochum in Germany, collecting dripwater in New Zealand’s Waipuna Cave as part of a four-year EU-funded monitoring programme. Our research aims at developing innovative geochemical indicators that we can use to quantify changes in the hydrological system or biosphere above the cave that result from variations in weather patterns and climate.

Caves are fantastic natural archives and laboratories. One can imagine caves like libraries of natural history: they host carbonate formations (such as stalagmites, stalactites, flowstones etc., collectively known as speleothems) which, like books, can be read by geochemists to learn about past climatic and environmental conditions. Importantly, these ‘stone books’ must, on the one hand, be protected from destruction by weathering, and on the other, must be written in a language that we can decipher. The secluded cave environment greatly helps protect speleothems from erosion and weathering, while monitoring the cave environment and hydrology allows us to learn the alphabet which nature uses to write natural history into the speleothems. Only then can we reconstruct, and ideally quantify, past environmental conditions.

Of special importance for our work in New Zealand is the El Nino-Southern Oscillation and the southern Westerlies. These two atmospheric subsystems strongly influence weather and climate in New Zealand. Southward or northward shifts of the Westerlies influence New Zealand crop yields and tourism, as well as the fishing economy, among others. El Nino and La Nina have equally strong impacts on weather patterns in New Zealand (and, in fact globally).

Despite many years of research, the mechanisms that cause changes to the ENSO and the Westerlies, and their interaction, still remain poorly understood. This lack of knowledge limits scientists’ efforts to estimate the magnitude and direction of changes that might result from ongoing global warming.

Our team of German, British and New Zealand geochemists, mathematicians, palaeoclimatologists and modellers set out to develop innovative tools and methods that would allow researchers to quantify, for example, changes in rainfall or seasonality, with the ultimate goal that these should be applicable globally. The manual sampling depicted in the photo might soon be replaced by an automatic sampler, which would greatly reduce the costs for regular fieldwork. Especially in remote settings such robots would be of great benefit for our research.

Our team also developed new proxies, such as a lignin-based (biomarker) proxy that allows us to reconstruct changes in vegetation above the cave. We also explored how transition metals behave in the hydrological system of caves, and the factors that control how these metals are transported and incorporated into speleothems. These research activities will hopefully give us powerful and very sensitive tools to quantify changes of environmental parameters, including rainfall, temperature, soil and vegetation and the underlying forcings, like ENSO. Until we have our tool kit properly calibrated, we continue our visits to Waipuna and other caves in New Zealand and Germany.

Our QUEST project has received funding from the European Union’s Horizon 2020 Research and Innovation programme and the Royal Society of New Zealand. Find more at http://quest.pik-potsdam.de/

By Sebastian Breitenbach, Ruhr University Bochum (Germany), and Adam Hartland, University of Waikato (New Zealand)

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: A painted forest fire

Imaggeo on Mondays: A painted forest fire

This week’s featured image may appear to be a painted landscape, but the picture is in fact a photo, taken ten years ago by Victoria Arcenegui, an associate professor at Miguel Hernández University in Spain, during a controlled forest fire in northern Portugal.

The blaze is actually hot enough to distort the image, making some of the flames appear as brush strokes, beautifully blurring together the colours of the fire, trees and smoke.

Intense heat such as this influences how light travels to both the human eye and a camera lens. As air warms it expands, while colder air becomes denser. As a result, light travels quicker through thinner warm air but is refracted more in denser cool air. So when there are shifting pockets of cold and hot air, the speed of light through air is constantly changing, creating a shimmering effect.

The prescribed fire in this photo is not only showcasing an interesting phenomenon, but is also providing an important service to the region’s ecosystem. For decades, forest fires were often considered detrimental to the environment, however, researchers say that small natural fires help strengthen ecosystems. For example, by burning old dead vegetation, these fires cycle nutrients back to the soil and clear space for new plants to grow. In addition, some plant rely on fires to spread or activate seeds. Historically, many wildlife management programmes prevented smaller fires from removing vegetation, subsequently creating overgrown forests, which are more susceptible to larger, more destructive fires.

Now, many researchers are studying the effectiveness of prescribed burning, where forests are periodically set on fire in a controlled setting to replicate the ecological impact of natural fires and reduce wildfire risk.

By Olivia Trani, EGU Communications Officer

References

Santín, C. and Doerr, S. H.: Fire effects on soils: the human dimension, Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), 20150171, doi:10.1098/rstb.2015.0171, 2016.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Dust devil sighting in the Atacama Desert

Imaggeo on Mondays: Dust devil sighting in the Atacama Desert

Dust devils are like miniature tornadoes, they form when a pocket of hot air near the surface moves fast upward and meets cooler air above it. As the air rapidly rises, the column of hot air is stretched vertically, thereby moving mass closer to the axis of rotation, which causes intensification of the spinning effect by conservation of angular momentum. In the Atacama Desert [in Chile] they are really common, and the desert is a perfect “lab” to observe and study their formation!

Description by Rita Nogherotto, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.