GeoLog

Guest

This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you’ve got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer Laura Roberts Artal to pitch your idea.

Imaggeo on Mondays: A hidden waterfall

Imaggeo on Mondays: A hidden waterfall

It’s fascinating how a relatively small outcrop, carved out by rivers and ancient ice, can reveal much about the geological history of an area. Today’s Imaggeo on Mondays post is one such example. Antonio Girona, a researcher at the University of Zaragoza, gives us a whirlwind tour of the geological history of the rocks revealed by the Sorrosal Waterfall, in Spain.

The visit to the Sorrosal Waterfall is an obligatory stop in your way to the Ordesa National Park, located in the Aragonese Pyrenees (NE-Spain). In the northern area of Huesca province, after a short walk from the town of Broto, this hidden waterfall can be found showing the geomorphological and geological history of the valley.

The Sorrosal Waterfall is located in the confluence of two valleys: Broto Valley, run by the Ara River (nowadays the longest river in the Pyrenees with 67 km) and Sorrosal Valley, a hanging valley 125 m above the position from which this photograph was taken. This waterfall was generated by the combined action of a glacier and the river. During the Ice Age, this site was covered by a 30 km long, 370 m deep glacier that shaped the valley that we nowadays call Broto Valley. At the same time Sorrosal river, fed by a small glacier in its headwaters, carved this valley transversely resulting in the Sorrosal Waterfall.

As a consequence of the slope between the two valleys, an interesting outcrop of geological interest can be observed. The rocks were originated from deep-marine sediments (turbidites) from the Eocene, which suffered a series of stepping folds as a result of the Pyrenees Alpine orogeny, becoming the wavy structure than can be appreciated nowadays.

 

By Antonio Girona Garcia, University of Zaragoza.

 

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

 

 

Imaggeo on Mondays: night cap over Mt. Fuji

Imaggeo on Mondays: night cap over Mt. Fuji

The first Imaggeo on Monday’s post of 2016 is quite spectacular! It features a lenticular cloud capping the heights of Mount Fuji, in Japan. Erricos Pavlis writes this post and describes how the unusual cloud formation comes about and why Mt. Fuji is such a prime place to catch a glimpse of this meteorological phenomena.

Mount Fuji at more than 3700 m is one of the highest volcanoes in the world and the highest mountain in Japan,located some one hundred or so kilometers southwest of Tokyo.

In November 2013 the International Laser Ranging Service (ILRS) held its annual Int. Laser Ranging Workshop at Fujiyoshida, a resort town very close to the volcano. The venue had a clear shot at the volcano and rewarded us daily with spectacular views of the entire volcano. On the first morning of my stay, November 9, I looked out the window very early on and Mt. Fuji was toped with a lenticular cloud, just like a nightcap for a cold winter night.

Being such a tall mountain and the only one in the area, Mt. Fuji is a perfect candidate to observe this rare kind of clouds that form in the troposphere and mostly over very tall topographic features. The lenticular clouds (formally called Altocumulus lenticularis) are the result of the obstructed wind flow due to an barrier, a mountain for example, but it could also happen with man-made obstacles like very tall buildings. They are formed at right angles to the wind direction and they are categorized in several different types, however, they all have the shape of lens and this has sometimes led viewers believe they saw an Unidentified Flying Object (UFO)! On rare occasions, the lucky ones might see several of these stacked on top of each other with thin layers of air separating them like a pile of pancakes! Even the single one was for me a very pleasant surprise though!

By Erricos Pavlis, Joint Center for Earth Systems Technology, Univ. of Maryland, Baltimore County, Baltimore, Maryland, United States of America.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

The Sustainable Geoscientist – how many papers should academics really be publishing?

The Sustainable Geoscientist – how many papers should academics really be publishing?

In this guest blog post, Nick Arndt, Professor at the Institut des Sciences de la Terre, Grenoble University, reflects on the pressures on academics to publish more and more papers, and whether the current scientific output is sustainable.

Imagine a highly productive car factory. Thousands of vehicles are built and each is tested as it leaves the factory; then it is stored in an enormous parking lot, never to be driven. Science publication is going this way. It is becoming an industry that produces without reason or limit, with no consideration whatsoever of whether the product is ever consumed.

A successful scientist is now required to publish 5 or more papers per year, the pressure coming from the need to foster the H-index and boost the total number of citations. Twenty years ago, to publish a paper in Nature or Science was all very well, but nothing that special; now, according to persistent rumours, a Chinese researcher can buy a used car with his share of the reward his university receives for such a publication.

Some months ago, a geoscientist (let’s call her Tracy) saw that Earth and Planetary Science Letters (EPSL) had published over twice as many papers in 2014 (about 630) than in 1990 (about 250). She recalled that twenty years ago there was just Nature; since then the publishing house has spawned Nature Geoscience, Nature Climate Change, Nature Arabic Edition and 36 other siblings, not to mention Nature Milestones, Networks, Gateways and Databases. In 2001 Copernicus Publications launched its first highly successful open-access journal; now it publishes about 50. Each day Tracy receives an email invitation to contribute to, or edit, a newly launched publication; such as the Comprehensive Research Journal of Semi-Qualitative Geodesy, impact factor 0.313, which “provides a extraordinary podium where scientists can share their research with the global community after having traversed numerous quality checks and legitimacy criteria, none of which promises to be liberal”. An editor of one well-known biology journal now handles 4300 manuscripts per year.

The explosion in the number of new journals means there are quite enough portals for Tracy to publish her annual quota, but are these papers ever consumed? What proportion is ever read? One well-known geoscientist published 114 papers in 2014, more than two per week. Did he have time to read them?

Imagine an artisan in a Morgan car factory, carefully hand-crafting V6 Roadsters, each car taking two full weeks to finish. Some of these become collection pieces, stored and never driven. Geoscience papers are going in the same direction – the time taken to write them is far, far longer than the time dedicated to reading them.

Many of us now admit that the only time we read a paper from cover to cover is when we do a review (the equivalent of the test drive). Tracy knows from talking to others that her own papers are never read thoroughly, even those that are remarkably highly cited.

Citation report for two highly productive researchers prepared by N. Arndt using Web of Science.

Citation report for two highly productive researchers (Prepared by N. Arndt using Web of Science).

Tracy has resolved to become sustainable, which means that she will publish no more than 2 papers per year and will train no more than two PhDs during her career. By avoiding shingling and taking care with the writing, the two papers will be quite sufficient to report the results of her research (at least those that warrant publication). The fate of some of her PhD students worries her; does a thorough knowledge of Semi-Qualitative Geodesy really help Judith, who now works in a bank, or Christophe, a mountain guide? She thought that 2 PhDs would be quite sufficient, one to replace her when she retired and the other reserved for that one student who was brilliant.

The sustainable geoscientist has a very mixed opinion of the science funding industry. She applauds the measures taken to help assure that money goes to the best science, but deplores the time and effort that is consumed. She spends a third of her time writing proposals to one agency or another, knowing that the chances of success are far less than one in ten. Another large slice of time is spent reviewing the proposals of others, a exercise she suspects is futile because the final decision will be based mainly on the H-index. She looks forward to the time when her grant proposals will be judged from the content of her two publications per year, which will be read thoroughly by all members of the evaluation committee.

 

By Nick Arndt, Professor at the Institut des Sciences de la Terre, Grenoble University & EGU Outreach Committee Chair

 

Editor’s note: This is a guest blog post that expresses the opinion of its author, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.