EGU Guest blogger

This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you've got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer to pitch your idea.

EGU General Assembly 2019 – all info you need

The European Geosciences Union General Assembly 2019 is about to open its doors. With less than two weeks time, we would like to provide a small guideline if you attend this EGU GA 19 for the first time and/or if you are an Early Career Scientist (ECS). We, that are your Geomorphology (GM) Division ECS Represenatives: Michael Dietze and Annegret Larsen, together with the ECS Rep team members Eric Pohl, Andrea Madella and Edwin Baynes.

EGU what?

The EGU GA 19 is looming. If you are interested in the full story, here is a comprehensive 72 pages pdf version. A shorter, very condensed version, ideal for EGU first timers is the guide located here.

Once at the meeting, you can stay up to date with a series of channels:

  • Your personal programme, which you should create via the EGU GA 19 website prior to the meeting, and which you should link with the EGU App on your smart phone, will be your main guidance. You can of course print the programme, but we strongly recommend using the App, for a long list of reasons.
  • The meeting’s newspaper EGU Today will provide daily highlights of the Meeting, keep an eye on the online documents.
  • Social media channels like the GM Twitter account and the GM blog will be vibrant during the meeting and provide you with updated information.

Where am I?

  • The EGU badge will be your ID for the conference and your public transport ticket for the duration of the conference from Monday to Friday (8–12 April). Ideally, you have already received it via mail or you can pick up in the reception, opposite of the main entrance, during the Ice breaker on Sunday, or together with a looooong queue of people on Monday at 8 am.
  • The EGU App will be a very handy item on your smart phone. It gives access to the entire program, all session details, allows scheduling and a lot of other fine stuff. It also holds the floor plans to prevent you from getting lost in the venue.
  • Getting to the conference centre will be easiest by subway U1 eastbound to Leopoldau, exit Kaisermühlen-VIC. From there, just follow the stream of poster tubes. Try optimising the number of foot steps by finding the best entry points to the subway.

GM Division essentials

When planning your personal programme, there are a few events that should definitely not be missing. Here is a short list of the most essential ones:

  • Short course: How to navigate the EGU (Mon 8:30, Brown level, Room -2.16). If this GA is your first one, then that course is a must. Get all the essential information an looks behind the scene.
  • GM Division Meeting (Thu, 12:45, Brown level, Room G2). This is the time and place when all your Geomorphology colleagues will gather to share information and make decisions. Lunch bags will be provided. There is almost no reason to miss this session, even if it collides with other scientific sessions.
  • Medal lectures, Bagnold Medal lecture (Thu, 19:00, Brown level, Room G2) and Arne Richter Award (Mon, 16:15, Brown level, Room G2) and Penck Lecture (Wed, 12:45, Brown level, Room G2). All three lectures are enlightening and we shall do our best to honor the medalists.
  • Meet EGU. If you were ever wondering who the GM division is, who your ECS Reps are and if there are questions you ever wanted to see being addressed, please find us (Tue, 15:45, EGU Booth, venue pathway).
  • EGU Job Centre. If you are looking for a job or have a position to be filled, look here.
  • Short Courses. There is a rich selection of short courses, with GM focus and beyond. Here is our general short list, tailored to GM ECS
  • Meet the Expert, an experienced scientist sheds light onto his/her trail to the current position, the detours and crossroads, with a personal flavour (Wed, 10:45, Brown level, Room -2.31).
  • Crowd Solving Problems, after a perfect start last year, this workshop will continue bringing together young people to a special kind of ECS event (Wed, 19:00, Brown level, Room -2.62).
  • If you are interested in further short courses, here is a list.

Make the most of the meeting

  • Unsure about poster, PICO or talk presentation constraints? Here are some presenter details. Beyond these, please take care to staying in time (12 min talking, not more, 2 min PICO introduction). Be present at your poster, even if you also want to see other posters. Leave a note at other posters to catch up with the presenters. Take the things you did not like about others home with you as a rule not to make these mistakes on your own in the future, but always give constructive and friendly feedback.
  • OSPP (Outstanding Student Presentation Prize) is a prize for ECS which will be given based on at least three reviews by more experienced scientist. Thus, make sure you are at your poster to be eligible and add the OSPP label to it (ask at the help desk or get it here). The review will be based on a set of criteria, including scientific relevance, timeliness, appropriateness of methods, sufficient background, aesthetic appeal, style of presentation. So make sure you address these points effectively.
  • Keep yourself and others happy
  • Bring your own water bottle (or buy an EGU one), avoid rubbish. 15000 people will create a lot of waste. You can do little bits with big impact. Tap water is of perfect quality, fountains and dispensers are available all over the place.
  • Respect people’s privacy and the work they present. Ask them before taking pictures of posters or slides, take care not to take pictures of unnecessarily large groups of people behind off your focus. Take a look at the EGU photo/no photo policy.
  • Behave at the drinks spots, please! It is charming, of course, but it is more charming to start discussing with other people, isn’t it? You will have plenty of opportunities to visit Vienna later on where the beer is very affordable.
  • Keep service rooms and rest rooms in good shape.
  • You can try to squeeze out the most of the session programme or stay alive even after days by taking breaks and not perform intra-session hoppings.
  • Look beyond your typical area of expertise. EGU is great in bringing together a wide variety of disciplines and ideas. Make use of this chance, do not stick to fields you already know, but explore links to other disciplines
  • Find your times to relax and lean back (photo competition), parks outside (beyond the big houses to the North, beyond the main road, incl. volleyball court

Now it is over?

You might think everything is over after the Friday afternoon poster session. Well, at least for GM things go on, even after the Friday evening.

  • Steepest Descent is a workshop the Saturday after EGU, bringing together people devoted to Earth surface dynamics in a friendly atmosphere, with breakfast, coffee and lunch. Bring your poster to put it up and discuss during the workshop, again.
  • Give feedback (last year: It is so important to take a few minutes and digest what you have liked and what you would like to see improved next year. There will be an online form which allows you very efficiently to tell the EGU Programme Committee and Copernicus your feedback. Please help us with this.
  • Consider running an own session or short course in 2020. If you feel, organising and convening a session or short course would be a cool thing – it is! It exposes you to an interesting cycle of brainstorming, organisation, advertising, planning and interacting with people. If you think you want to propose an own session, do so keeping in mind the main rules and ideas.

So, finally?

We hope this blog helps you ECS to have a better EGU 2019 experience. We are very much looking forward to see and chat with you in Vienna. Have a great time and fun with preparing your contributions.

Your ECS Rep team

This post was written by Micha Dietze and Annegret Larsen (GM ECS Representatives)

Diving under the scientific iceberg

Diving under the scientific iceberg

written by: Anne Voigtländer, Anna Schoch, Elisa Giaccone, Harry Sanders, Richard Mason, Johannes Buckel

At the EGU General Assembly international researchers from all earth science communities gather and share their most recent endeavors. This year, we, a group of European young geomorphologists, tried a new session format to address challenges we all face in our research, ranging from inaccessible data and methods, unknown initial conditions, up and down scaling in space and time, to unknown processes and land forms. In discussions of conference talks, only the tip of the iceberg of Earth science research can be exploited. The rest of the iceberg, resembling all challenges, ideas and minds (of the audience) usually remains in the shaded, unspoken depth. We explicitly wanted to cater these challenges or ideas and use the crowd of participants to approach or solve them. In the short course SC1.29/GM12.1 “Crowd-solving problems in earth science research”, we wanted to use the synergetic effect of the diverse conference audience as a resource. Our main methodology to access these resources was old-fashioned discussion. We flipped the tables and had problem stating talks for 2 minutes, which is the usual discussion time. Five Early Career Scientists came forward with their challenges and ideas they face in their research and asked the audience for solutions in 40-minute discussion rounds:

How to secure funding for basic, non-societal research?

(Vittoria Vandelli, Università di Modena e Reggio Emilia, Italy)

Perhaps one of the least funded, but historically most productive research areas is basic research, which at the time may appear to have little or no public impact, but often results in ideas and inventions that change history. In a world of ever reducing science budgets, securing funding and finding novel methods of funding research outside of grants, becomes the holy grail. You can write about your work for magazines who in turn cover your travel expenses, sell local stamps to collectors and even involve the curious public for non-mainstream projects. However, in reality, the majority of our basic research relies on grant success, and so the ability to write a strong application (hitting on popular paradigms like ‘climate change’). In that case the challenge is to find and access grants. So why not create an open access database for ECS, to both contribute and utilize for securing grant funding? However, if you have tried and not found success with grants, hobby writing isn’t for you, and the idea of involving the public isn’t feasible, there’s nothing wrong with teaming up and collaborating with an already wealthier researcher!

How to make measurement techniques affordable?

(Anette Eltner, Technische Universität Dresden, Germany)

There are many good reasons to make measurement techniques affordable, such as fostering independent research, having low barrier easy access (financially, politically), increasing the quantity and density of data and thus robustness, greateningr knowledge of and possibilities to improve measurement techniques, and becoming more resilient if devices get swept away in monitoring hazardous processes… However, data quality and reliability need careful consideration, and data processing and analysis need automation to handle increasing data amount. Several examples associated with low cost solutions are already applied in earth science research; foremost are software solutions (e.g. R, QGIS). What we need for the hardware measuring devices is cooperative development of more low cost methods, big data handling and quality assessments. This could be realized in a “maker space” at universities, where scientist from different disciplines can gather to find joint solutions, or platforms and communities, such as GitHub for software. Therefore, the “crowd” and communication in this crowd could be a solution. In an ideal case, low cost methods were associated with a “crowd” supporting the application and development. Additional funding to promote in particular low cost methods should be provided.

Numerical modelling at the edge: why accuracy matters?

(Benjamin Campforts, KU Leuven, Belgium)

Numerical models are transforming our understanding of the world around us, allowing simulations of processes at scales impossible to investigate by any other means. Numerical models are simplifications or idealisations of ‘real’ environments and the accuracy of the model outputs is reliant on how well models represent this reality. Thus, while the possible complexity of numerical models makes them essential and ground-breaking tools for earth science research, they also cause some problems. First of all, how well do we understand these natural processes and how are they incorporated in the model design? And then, which equations and algorithms should we choose, ideally based on in-depth knowledge of natural processes? In this respect, interdisciplinary communication and exchange is required between modelers and field-based scientists in order to parametrize and grasp the physics of the natural processes. Practically we need greater sharing of ideas, open source models and data, to improve accuracy and help to understand errors surrounding model predictions.

How to secure data accessibility as a young researcher?

(Moctar Dembélé, Université de Lausanne, Switzerland)

Depending on where we live, or the topics we work on, data (i.e climatic, atmospheric, hydrological, topographic…) is not available. And when it is available, sometimes it is a challenge to get access to it. To call this challenge might actually be the starting point to overcoming it and allowing ECS to contribute substantially to science. Both, the producers (governmental or private agencies) and potential users (scientists) of the data can help with data access, without personal, national or financial biases. In order to make this happen, we need to clarify why data sharing and accessing is beneficial to both parties. Produced and published (meta)data (where data acquisition is described in a reproducible way) wants more fame, collaboration and citation. Governmental and private data producers could use the same, already existing platforms, scientific peers use to share and access their data. Users, especially ECS, would love to have common platforms to share and access data that could be used to reinterpret and expand data and to identify data gaps

How to overcome the subjective nature of interpreting fluvial archives?

(Wolfgang Schwanghart, Universität Potsdam, Germany)

Interpretations of archives and subsequent parametrizations for (numerical) models rely on subjects as well as the very individual and special outcrop site. A first step could be to have the experience based tacit knowledge of a subject be translated into explicit knowledge, in order to make it accessible and comparable for other subjects (deduction). Combining the interpretations of several (interdisciplinary) subjects might provide a more objective, rigor and robust perspective. If enough parameters and proxies exist, we could also turn to statistics (induction). And if that is no option, we might try abduction, like Sherlock Holmes, where iterations of field/archive and model/statistics can, at least subjectively, make data collection more transparent, sharpen the interpretation and define further research questions.

We need to talk!

A synthesis solution to the question and the above stated challenges is: Communication. Obviously you can’t solve the challenges in 40 minutes, but the concept to spend more time for discussions on a conference to tackle the problems every scientists faces in this way or another worked. All five groups with roughly ten participants. Each came into conversation, exchanged experiences, analysed new aspects and developed ideas. We received very positive feedback from all participants and were encouraged to organize a similar event again – so maybe next year we can crowed-solve what the submerged part of an iceberg is called, anyway?

The organization of this session was financially supported by the British Society for Geomorphologie and the Arbeitskreis für Geomorphologie.










written by: Anne Voigtländer, Anna Schoch, Elisa Giaccone, Harry Sanders, Richard Mason, Johannes Buckel

EGU – realm and maze?

– written by Micha Dietze, Annegret Larsen (both GM Early Career Representatives), and Anouk Beniest (EGU TS Early Career Representative)

An interview with the Susanne Buiter, the current chair of the EGU Programme Committee

Susanne Buiter is senior scientist and team leader at the Solid Earth Geology Team at the Geological Survey of Norway. She is also the chair of the EGU Programme Committee. This means that she leads the coordination of the scientific programme of the annual General Assembly. She assists the Division Presidents and Programme Group chairs when they build the session programme of their divisions, helps find a place for new initiatives and tries to solve issues that may arise. This also includes short courses, townhall and splinter meetings, great debates, events on arts and other events. The programme group also initiates discussions on how to include interdisciplinary or transdisciplinary science and how to accommodate the growth of the General Assembly.

Susanne, you are perfect example of a scientist bridging scientific work with scientific management. What brought you to this and how do you manage keeping the balance?

Susanne Buiter senior scientist and team leader at the Solid Earth Geology Team at the Geological Survey of Norway.

I would not call it perfect! And I find it not so easy to keep a balance. I am very fortunate that my employer, the Geological Survey of Norway, recognises the importance of organisations like EGU for the geoscience community in Europe. That means that I can partly use working hours for EGU activities and that is a great help. For me, EGU fulfils an important task in bringing people together for networking, starting new projects, discuss new ideas and I would like to contribute to making that possible. I guess one thing led to the other, but what is important for me is that all activities are truly fun and rewarding.

It seems you have filled almost all the different possible jobs within the EGU: giving talks, discussing posters, judging presentations, convening sessions, coordinating ECS activities like short courses, acting as Programme Group member and leader, serving as TS Division President, and now working as Programme

Committee Chair. Could you describe what the main goals of the EGU are for you, and what brought you to become such an active member of the EGU community?

I see the role of EGU as serving the geoscience community through enabling networking, discussions and information sharing. Our General Assembly is very important for this and also our journals. I love the outreach and education that EGU does, through the GIFT programme and attempts to interact with politics and funding agencies. By the way, the short courses are for and by all participants, including the ECS, but not only!

Could you shed some light on the structure of this big ship called EGU in a few sentences?

What characterises EGU is that the union is by the community and for the community. EGU has a small office in Munich that oversees the day-to-day operations and coordinates our media activities ( They are also EGUs long-term memory. We have 22 divisions from Atmosphere Sciences AS to Tectonics and Structural Geology TS. The division presidents are usually also chair of their associated Programme Group, with the same abbreviations AS, BG, CL etc that you see in our programme at the General Assembly in Vienna. They schedule their parts of the conference programme. For this, programme group chairs rely on the work of conveners (you!) to propose and organise sessions. Division presidents are also member of EGU’s council, together with EGU’s executives. Here decisions are taken on budgets, committee work, new executive editors of journals etc. EGU has among others committees for awards, education, outreach, publications and topical events ( Copernicus is hired by EGU for organisation of the General Assembly and publication of the 17 journals ( All EGU journals are open access. Sorry, that was rather more than a few sentences…

How flexible – in your experience – is the EGU administration and organization on a scale of 1-10?

A 9! I would have like to say a 10, but improvements are always possible. The EGU office, executives, divisions and committees put a lot of effort in coordinating all activities. We actually rely on flexibility as EGU is bottom-up. This is also how new initiatives find a place. For example, EGU2018 will have a cartoonist-in-residence and a poet-in-residence, a new activity I am very excited about and that was proposed by participants.

Regarding the ECS, which role do you feel should they play at EGU level? What is running very well and what would you like to change? Where do you think are fields where you see opportunities to become more active?

About half of participants to our General Assembly identify as ECS according to the survey from 2017 and abstract submission statistics for 2018. So they should play an important role! Not only in the General Assembly, but also in our committees. The ECS representatives are important for their feedback to council, making the ECS opinions heard, and starting new activities, such as the networking reception, many short courses, and the ECS lounge. What I would like to change? More ECS session conveners please! I would really like to encourage ECS to submit session proposals during our call-for-sessions in Summer. And please consider to submit your abstract with oral preference, so conveners can schedule ECS talks.

What is most important for ECS to know about the EGU structure?

Know your ECS representative. At the General Assembly, come to the ECS forum on Thursday at lunch time and the ECS corner at the icebreaker. Connect with scientists in your division(s) by attending the division meeting.

From your perspective, what can we do to motivate more ECS to actively shape “their” EGU?

It is building on what you already do: share information on EGU, the divisions, that we are bottom-up and therefore rely on suggestions by community members. Encourage ECS to suggest sessions, volunteer as committee member when there are vacancies (these are advertised on and through social media), and organise activities at, before and after the General Assembly. Encourage ECS to use the conference in Vienna to network with all participants, not only through ECS channels, and find new opportunities that way. My observation is that many experienced scientists love to discuss with ECS and perhaps even start new collaborations.

Which ways and approaches do you see to better connect ECS within and between Programme Groups?

I find especially connections *between* Programme Groups very interesting, not only for ECS. EGU is growing to a size that it has become more difficult to find time to look outside your own bubble. We have been investigating ways to make our programme more interdisciplinary ( and perhaps in the future also transdisciplinary, to try to create new approaches. That said, I am happy to see at the ice-breaker and networking reception that many ECS identify with more than one division! It is important to cross borders, that is where a lot of exciting research happens.

The mentoring programme is a rather new feature for many divisions. Could you give some feedback on how it went last year? Will it be a permanent item during the EGU General Assembly?

We organised the mentoring programme in 2017 as a pilot, which we on purpose kept somewhat low profile to generate feedback and develop our tools. We see the programme as a networking opportunity for both first-time and experienced attendees. Feedback was very positive, so we are rolling out in full this year. We offer matching, two meeting opportunities at the General Assembly and some guidance (

The EGU General Assembly can be overwhelming at first. What would you advice young (and not so young) researchers to do to have a successful meeting?

Attend short course SC2.1 on how to navigate the EGU (Monday at 08:30), read the first-timer’s guide to the General Assembly (, and make sure you are on the mailing list for your division ECS representatives if they have one. Some divisions have an ECS evening event, do attend! Consider taking part in the mentoring programme of course. And prepare a personal programme before heading to Vienna. Not to follow it in detail, but at least to know where to go for talks, PICO, short courses, posters, and events. I would definitely use the General Assembly to talk to other participants, this is a great chance to expand your network.

Time and space are precious during the EGU General Assembly. There are over 10.000 contributions, many aiming at a talk, but ending up as posters, the session rooms are often overcrowded, the lunch break brings a rush and long queues. Is there any way the Union Council considers to improve certain bottle necks or are we already at the maximum of optimizing some of the conference logistics?

In 2017, we had ca. 17,400 presentations and 14,500 participants. We rented a new hall on the forecourt of the conference centre, which we will also have in 2018. This increased the conference space, taking pressure off the rooms and surely reduced queues. Copernicus and EGU work continuously on optimising the scheduling. We also started a broader discussion on future formats of the General Assembly. I would like to take this opportunity to encourage trying a PICO presentation or convening a PICO session. I have run some poster-only sessions the last years, which have been great fun as we had so much better time for discussions.

Many ECS approach their representatives because they are worried or disappointed to see their initiatives for scientific session proposals not succeeding. Instead they find year after year the same names behind established and crowded sessions. Do you have any advice how to deal with this or do you think this is not really an issue?

I am aware that this may unfortunately play for some sessions, but overall I think we cater well to new initiatives. My advice to Programme Group chairs is to encourage ECS conveners for new sessions and also to include ECS as part of long-running sessions that should rotate, and renew, conveners each year. Our General Assembly offers place for sessions on the basics and fields that require long-term developments, and at the same time also on new, emerging topics. Sometimes these sessions on upcoming topics may be small in number of submissions, but large in attendance. The best I can say to anyone is to discuss concerns or feedback regarding convening with the division president and the ECS division representative.

With the growing amount of members and participants (almost) every year, how do you see the EGU’s future both as a community and as one of the most important events?

EGU is an important voice of the Earth and space science community in Europe. I think the union should continue to do what it is good at: providing a platform for networking, discussions on new and old fun topics, and information sharing. I would like EGU to stay flexible and cater to new formats in its journals and at its General Assembly, the latter also in light of discussions on CO2 costs of meetings.

Thank you Susanne!

Could I emphasize again that EGU is bottom-up and depends on input from our communities? So please contact your ECS representative, the division president or me ( with ideas and feedback!

Some more information online here:

– written by Micha Dietze, Annegret Larsen (both GM Early Career Representatives), and Anouk Beniest (EGU TS Early Career Representative)


A geomorphologist’s winter refuge

– written by Michael Dietze, GFZ Potsdam –

The Sävor River, northern Sweden, under late winter conditions. The frozen river has been sensed by ADCP and seismometers to constrain flow properties and bedload transport dynamics (credit: Michael Dietze).

Why Swedish, Finnish and German geomorphologists meet in the boreal zone to drill holes into icy rivers and frozen ground.

There are many ways to counter the lazy days between Christmas and the EGU meeting. One of the more promising ones is this: think of doing collaborative field work in February, in northern Sweden, on and around a frozen river. This is what Lina Polvi, Lovisa Lind (both Umeå University), Eliisa Lotsari (University of Eastern Finland), Jens Turowski and Michael Dietze (both GFZ Germany) decided to do. They met in Umeå, northern Sweden, at 64° North – just when the thermometer had recovered from its chilling excursion down to -25° C back to a cozy -12° C – to investigate how much and how fast water flows under an ice-covered high-latitude stream, and by which mechanism and how much sand and gravel are transported in these northern rivers during the cold period of the year.

Lina drilling a hole through half a meter of river ice to sense the stream properties (credit: Eliisa Lotsari).

We all know that bedload transport is a key process in rivers, affecting nutrient transport, habitat availability and hazard potential of streams. Yet, currently, in northern regions, scientists are virtually blind-folded for almost half a year when thick ice cover precludes the view to the hydrodynamic processes in channels, and traditional survey and monitoring methods are unavailable. So, how do you measure flow velocity and bedload transport when your research object is hidden below half a meter of compact ice? Well, at least the hydraulics are quite easy: flow velocity can be measured with an acoustic doppler current profiler (ADCP), a device that can measure bed topography and flow velocity in three dimensions in the entire water column. In the summer the ADCP can be towed across the stream on a small raft, but in winter in a frozen river, it needs to be lowered into holes drilled through the ice. And even in the 21st century, a few days before women’s day, the staff at the fishing shop that rented out the motorized ice auger felt the need to carefully and skeptically explain to the women that an ice auger is a “very powerful and dangerous thing”. The three female scientists politely expressed their gratefulness for the concern, pointed out their prior experience, and hired the machine anyway.

Letting the sensors doing their work. Lovisa, Jens and Lina observing an ADPC measuring hydraulic conditions under ice (credit: Eliisa Lotsari).

Packed with the auger, ADCP, geophones and seismometers, a scary ice saw, red spray paint, a GoPro camera, time-lapse cameras, and plenty of duct tape, all five river scientists trudged through the meter deep snow with snowshoes along the bank of the Sävar River until they found a reach with ice thick enough to walk on. How do you recognize that it is thick enough? Well, you may be less careful, but our heroes used a well-known and long-established Swedish testing device with a mass of 400 kg: the moose. Seeing moose tracks in the snow on top of the river ice is always a good sign that it is safe to walk on. Before the first measurement could be made, around 20 holes with a diameter of 20 cm needed to be drilled through 50 to 80 cm thick ice. This was shared fun and with the last ice layer collapse, as the dark brown river water seeped up to the surface, the site was ready for the ADCP surveys, water sampling and underwater videos with the GoPro camera.

Letting the sensors doing their work. Lovisa, Jens and Lina observing an ADPC measuring hydraulic conditions under ice (credit: Eliisa Lotsari).scary ice saw, red spray paint, a GoPro camera, time-lapse cameras, and plenty of duct tape, all five river scientists trudged through the meter deep snow with snowshoes along the bank of the Sävar River until they found a reach with ice thick enough to walk on. How do you recognize that it is thick enough? Well, you may be less careful, but our heroes used a well-known and long-established Swedish testing device with a mass of 400 kg: the moose. Seeing moose tracks in the snow on top of the river ice is always a good sign that it is safe to walk on. Before the first measurement could be made, around 20 holes with a diameter of 20 cm needed to be drilled through 50 to 80 cm thick ice. This was shared fun and with the last ice layer collapse, as the dark brown river water seeped up to the surface, the site was ready for the ADCP surveys, water sampling and underwater videos with the GoPro camera.

Installation of a seismic station to sense hydraulic and sediment transport dynamics of the Sävar River by Micha (credit: Eliisa Lotsari).

Meanwhile, Micha left the slippery ground to explore the bank and terrace landforms around the measurement site. He scouted for suitable locations to deploy geophones and seismometers. Geophysical instruments designed for earthquake analysis in a study about fluvial geomorphology? Indeed, seismic sensors are ideal for gathering information about hydraulic dynamics and sediment transport where other systems would simply fail. The instruments are sensitive enough to record the impacts of the smallest rain drops, and they deliver precise estimates of the seismic wave field emitted by the turbulence of the water and pebbles being dragged over the river bed. And crucially, they do not need to placed within the river, but can monitor everything comfortably from the bank. Three geophones were installed along a line perpendicular to the river, and one broadband seismometer some 30 m upstream. The instruments need to be installed in a hole in the ground, half a meter deep. Luckily, the ground was not frozen throughout, as suspected, and the loose sand beneath a surface layer of only 10 cm of frozen soil was easy to remove. The charcoal brought to defrost the ground was put to good use in a barbecue at lunch time. The sensors were leveled in the holes, oriented to North, connected to the data loggers and the station was ready to record 1000 samples per second for the next month, until the batteries need to be exchanged by Lina and Lovisa.

The seismic sensor network forms a triangle that allows for not only constraining water flow and sediment transport, but also locating seismic point sources, such as cracking in the ice. This latter functionality will become especially interesting when, in late spring, the frozen surface of the river cracks open and potentially an ice jam forms while a flood rushes through the valley. The combined information on timing and location of single events allows detailed insight to the anatomy of this seasonal singularity.  Furthermore, the seismic survey allows inferring the seismic signature of such ice break-up events, along with precursor activity like small cracks that compensate the increasing tension within the ice cover.

Spectrogram of two days of seismic recording. River turbulence is visible around the 10 Hz band (continuous yellow band), the activity period in early morning of 7 March presumably represents an ice break-up event 100 m downstream the installation, and the high frequency activity is caused by wind, interacting with the trees (credit: Michael Dietze).

The field team (Jens, Micha, Lovisa, Lina and Eliisa, from left) enjoying a winter barbecue after successful installation (credit: Eliisa Lotsari).

After two chilly days in the field most of the work is done, the seismic network is ready to operate, the ADCP data is already processed and the team is improvising to enjoy a winter barbecue, chatting about when to meet again to recover the equipment, bring together the data output and share ideas for the follow-up project.

Interested in more high latitude fluvial dynamics, bedload transport and environmental seismology? Approach the team members at the upcoming EGU meeting in Vienna or see the individual web pages:

Lina, Lovisa, Eliisa, Jens and Micha


– written by Michael Dietze, GFZ Potsdam –