Climate: Past, Present & Future

Climate of the Past

Magnetic minerals: storytellers of environmental and climatic conditions

Magnetic minerals: storytellers of environmental and climatic conditions
Name of proxy

Environmental Magnetism (also known as enviromagnetics)

Type of record

Environment and climate proxy


Sedimentary environments (for the most part)

Period of time investigated

Present times to millions of years (depending on the preservation conditions)

How does it work?

Magnetism is a physical property that results from the behaviour of elementary particles in any substance. Depending on the chemical composition and distribution of elements within the material, different kinds of magnetism may result. In environmental magnetism mainly the strong magnetic iron minerals in samples are analyses to gain information on environmental processes and climatic conditions. These samples frequently originate from hard or soft rocks from land, caves, lakes, rivers, or oceans. However, the method can be used to monitor environmental pollution in dust, water, or sediments as well [1]. 

Figure 1. Simplified representation of the methodological approach.

The presence or absence of certain minerals in a sample and its properties (e.g. their physical appearance) are typical of specific environmental and climatic conditions (Fig. 1). This is the basic assumption of environmental magnetism. The minerals can be detected by modern equipment even when they are only present in trace amounts. The identification of the minerals is performed by a number of experimental procedures, which all focus on monitoring changes in magnetic properties while subjecting the sample material to different magnetic fields or temperatures. The resulting measurement signal always shows the behaviour of all magnetic components in the sample material. This signal can already be used as proxy for environmental changes and climate conditions. However, only successively performed data analyses allow to distinguish different kinds of magnetic particles by varying magnetic properties. To fully understand the palaeoclimatic and palaeoenvironmental information of the collected data, one needs the information on the components and must understand the processes that form, transform, or break down magnetic minerals. If magnetic minerals are extracted from sample material, they can be subjected to optical or chemical analysis. Thereby, information on the physical appearance of individual grains and their exact chemical composition can supplement the magnetic data.

What are the key findings that have been done using this proxy?

Magnetic analyses were used to unveil environmental conditions in numerous studies. A famous example is the analysis of air-blown sediments (loess) from China [2]. The study of a thick sequence of more than a 100 m shows an alternation of high and low magnetisation values, which correspond to colour changes from brownish to yellowish, respectively (Fig. 2). The brownish sediments were formed during moist and warm conditions, whereas the yellowish loess deposits were accumulated during cold and dry periods. The variation in magnetic properties results from the different processes associated to the formation of minerals in soils, which only take place in warm and moist climates. The occurrence of these newly formed minerals can be monitored by the magnetic susceptibility, which is a measure of a material’s ability to be magnetized. Thereby, the magnetic susceptibility of the Chinese loess is a palaeoclimatic proxy for variations in temperature and rainfall. This information was used for the reconstructions of the past atmospheric circulation pattern and the evolution of the Asian monsoon.

Figure 2: Illustration of the change of a bulk sediment property, using the example of susceptibility. No real data is shown.

In another example, environmental magnetism was applied to sediment cores from the Heidelberg Basin in Germany [3]. Because of the complex genesis of these fluvial deposits, the sediments are composed of a number of different magnetic minerals, which are all telling parts of the story of this region. To identify the different minerals, their individual magnetic signals were extracted from the overall magnetic signal by different very specific and time consuming analytical methods. Additionally, the physical conditions of the magnetic minerals were determined (e.g. grain shape). The combination of all results revealed the lower half of the investigated sediment cores to be deposited under Mediterranean climate conditions in which the groundwater table fluctuated, while the upper part was formed under cooler climates and stable groundwater conditions. Geological archives of the evolution of the Rhine River are rare and most methods fail to disclose details on the past climate conditions.  Here, environmental magnetism provides valuable information on the hydrological regime and the climatic conditions.

Taken together, environmental magnetism is a non-destructive method that is applicable in a number of geological settings. The strengths of the method are manifold. In some settings well constraint information can be gained by fast and non-destructive measurements (example one). In other geological settings information on climatic and environmental conditions is unveiled, when other methods fail to contribute any result (example two).

This post has been reviewed by the editorial board


[1] EVANS, M. E. & HELLER, F. (2003) Environmental Magnetism - Principles and Applications of Enviromagnetics, San Diego, Academic Press.

[2] HELLER, F. & TUNG‐SHENG, L. (1986) Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China. Geophysical Research Letters, 13, 1169-1172.

[3] SCHEIDT, S., EGLI, R., FREDERICHS, T., HAMBACH, U. & ROLF, C. (2017) A mineral magnetic characterization of the Plio-Pleistocene fluvial infill of the Heidelberg Basin (Germany). Geophysical Journal International, 210, 743-764.

How earthworms can help us understand past climates?

How earthworms can help us understand past climates?
Name of proxy

Earthworm calcite granules (ECG)

Type of record

Paleotemperature and paleoprecipitation reconstruction; radiocarbon dating


Continental environments – loess/paleosol sequences

Period of time investigated

Mostly Last full Glacial cycle – from 112,000-15,000 years Before Present (BP) (or older depending on the preservation of the granules).

How does it work?

Earthworms are commonly found living in soil and feeding on organic matter at the soil surface. In carbonate soil, some of them secrete small granules (0.1 to 2 mm) within 20 cm of the soil surface (Fig. 1). These granules, composed of crystalline calcite, are formed in the calciferous glands of the common earthworm species Lumbricus (Fig. 1).

Figure 1. Formation and structure of earthworm calcite granules: A) Schema of the calciferous glands of Lumbricus terrestris (Canti, 1998; Darwin, 1881), B) Scanning Electron Microscopy of a fossil granule, modified from CoDEM/BATLAB C) Distribution of granules through present day experimental soil (Canti and Piearce, 2003), D) Thin section of a fossil granule (photo P. Antoine).

Fossil earthworm calcite granules (ECG) are common in various carbonate-rich Quaternary deposits and have been identified in loess-paleosol sequences in western Europe. Aeolian loess (i.e. accumulation of silt size sediment formed by the deposition of wind-blown dust) preserves evidence for climatic fluctuations in the past: generally, primary loess representing periglacial conditions coeval with expanded ice sheets alternates with tundra permafrost horizons and arctic soils representing milder climates.

Over the last glacial cycle (between 112-15 ky BP), the climate of the Earth varied on millennial timescales between cold (stadial) and temperate (interstadial) periods. This climate variability is reflected in the character of the loess sediment. These short-term climatic changes had a strong influence on landscapes, ecosystems, including human beings. However, loess sediment analysis only give us information on the relative changes of climates. We lack quantitative temperature and precipitation data to precisely reconstruct past conditions.

The granules of earthworms living in past loess environments provide a quantitative tool. The granule concentrations correlate with the nature of the loess sediment; paleosols preserve the highest concentrations while primary loess the lowest. These observations highlight a rapid response of the earthworm population to climatic variations suggesting milder climatic conditions during the formation of paleosol. ECG can be considered as a new paleoenvironmental proxy, capable of detecting rapid climatic events within the Last Glacial loess sequence. Furthermore, the chemistry of these ancient earthworms’ diets can be calibrated to the temperature and precipitation of the climate prevailing at the time.

What are the key findings that have been done using this proxy?

We developed a new method to calculate past temperatures and precipitations based on oxygen and carbon stable isotope compositions of earthworm granules from loess at the Nussloch site in the Rhine Valley, Germany. Our results provide the first quantitative past climate data from loess sediments.

Figure 2: First quantification of paleoclimate data in a loess sequence: Comparison between radiocarbon dating (Moine et al., 2017), granule concentration (Prud’homme et al., 2018b) and quantitative paleoclimate parameters (Tair and MAP, Prud’homme et al., 2016, 2018a) of the Nussloch loess sequence (Antoine et al., 2009) with the δ18O of Greenland ice core (NGRIP, Rasmussen et al., 2014).

Figure 2 shows the results stable isotope geochemistry of earthworm granules from selected strata within the loess sequence at Nussloch. Temperatures for the warmest months were estimated between 10 to 12°C and the mean annual precipitation was estimated between 250 and 400 mm during the formation of palaeosols. Our results suggest that the climate at Nussloch during the temperate periods (interstadials) were most likely subarctic with cool summers and very cold winters.

Earthworm granules can also be directly dated by radiocarbon methods (Moine et al., 2017). Since the nature of loess sediments reflects climatic variations over short (millennial) timescales, the lack of precise chronologies in loess can be a problem when trying to correlate with global climatic events. Our new approach, combining precise radiocarbon dating with quantitative climate reconstruction, represents a major advance for understanding climate in terrestrial regions.

Moreover, the radiocarbon chronology facilitates precise correlation between terrestrial sequences and ice core records. This is fundamental for understanding teleconnections between mid- and high-latitude climate changes, as well as the spatial and temporal impact on prehistoric populations in Europe.

This post has been reviewed by the editor.


Antoine, P., Rousseau, D.D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H. & Zöller, L. (2009) Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 2955–2973.

Canti, M.G. (1998) Origin of calcium carbonate granules found in buried soils and Quaternary deposits. Boreas 27, 275–288.

Canti, M.G. & Piearce, T.G. (2003) Morphology and dynamics of calcium carbonate granules produced by different earthworm species. Pedobiologia 47, 511–521.

Darwin, C. (1881) The Formation of Vegetable Mould through the action of Worms, with Observations on their Habits. Murray, London.

Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud’homme, C. & Rousseau, D.D. (2017) The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proceedings of the National Academy of Sciences of the United States of America, 1–6.

Prud’homme, C., Lécuyer, C., Antoine, P., Moine, O., Hatté, C., Fourel, F., Martineau, F. & Rousseau, D.D. (2016) Palaeotemperature reconstruction during the Last Glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany. Earth and Planetary Science Letters 442, 13–20.

Prud’homme, C., Lécuyer, C., Antoine, P., Moine, O., Hatté, C., Fourel, F., Amiot, R., Martineau, F. & Rousseau, D.D. (2018) δ13C signal of earthworm calcite granules: a new proxy for palaeoprecipitation reconstructions during the Last Glacial in Western Europe. Quaternary Science Reviews 179, 158–166.

Prud’homme, C., Moine, O., Mathieu, J., Saulnier-Copard, S. & Antoine, P. High-resolution quantification of earthworm calcite granules from western European loess sequences reveals stadial–interstadial climatic variability during the Last Glacial. Boreas. Accepted 1st October 2018

Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W.Z., Lowe, J.J., Pedro, J.B., et al. (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 14–28.

How glowing sediment can help to decipher the Earth’s past climate !

How glowing sediment can help to decipher the Earth’s past climate !

The last 2.5 Million years of the Earth’s history (termed Quaternary) are characterised by climatic cycles oscillating between warm (interglacial) and cold (glacial) periods. To be able to fully understand and interpret past climate variations the development of accurate and precise chronological techniques is crucial. Optically stimulated luminescence (OSL) dating is a strong geochronological tool that can be used to date across a wide time range, from the modern days to a few hundred thousand years ago. It has been used to date sediments in nearly all parts of the world. The event that is being dated is the last time the sediment has been exposed to daylight, which means that the luminescence age is directly related to the time of sediment deposition.

How does OSL work?

OSL dating is based on the ability of minerals to store energy (Preusser et al., 2008). Luckily quartz and feldspar, the two most common minerals in the Earth’s crust have this ability. They work like small batteries, which get charged when the sediment is buried (Fig. 1 C, Duller, 2008). This is due to radiation from naturally occurring radioactive material (uranium, thorium and potassium) in the surrounding sediment, and from cosmic rays for samples closer to the surface. Like a battery, the quartz and feldspar grains have a finite capacity for storing energy. Once completely charged, the battery-like grain is considered as being saturated. This upper age limit of OSL dating depends on the ability of the grain to store the energy and on the rate at which the grain is charged (i.e. the dose rate, derived from uranium, thorium, potassium and cosmic radiation). If the surrounding material is very radioactive, the dose rate is very high, which means that the grain saturates rather quickly (Fig. 1C), but if the dose rate is low, the battery-like grain charges more slowly and OSL can be used to date geomorphological processes further back in time. Exposure to natural sunlight will remove charge from the grain. This bleaching or resetting occurs e.g. during sediment transport and deposition (Fig. 1A, D). Subsequently, the sediment can be buried again and the grain will get charged (Fig. 1D) until it is saturated, or until the sediment is transported and re-deposited, or is sampled (Fig. 1F). Once sampled in opaque tubes (Fig. 2 A), so that no daylight can affect the amount of energy stored in the grains, the sample is ready to be processed in the laboratory.

Figure 1: . Accumulation and release of charge within mineral grains (modified from Duller, 2008). (A) During transport of sediment the accumulated charge gets released due to energy provided by natural sunlight; (B) At deposition, the charge is fully released and the “battery” is emptied; (C) Charge can accumulate within the grain during burial due to natural ionising radiation; (D) and (E) The process described before can happen multiple times over geological times scales, depending on the environment and the geological processes; (F) When a sample is taken in opaque tubes or using cores the stored energy at that particular time gets sampled and can later be released in the laboratory to obtain a luminescence age.

What happens in the laboratory?

Sample preparation involves multiple steps to isolate the right minerals and grain size for dating. A key step is the decision on the mineral that will be used for dating. Whilst quartz gets reset more quickly when exposed to sunlight, feldspar has the potential of dating events further back in time.

The energy stored in the mineral grains cannot only be released by natural sunlight, but also in the laboratory using a defined wavelength under controlled conditions (Fig. 2B). During this process, the grain emits light, which is collected. This emitted light gives information on the amount of stored energy (Duller et al., 2008; Preusser et al., 2008). When comparing this light output, from a natural radiation dose received, to a light output generated by a known laboratory dose, the so-called laboratory equivalent dose is obtained. This equivalent dose (in Gy), divided by the natural dose rate (in Gy/1,000 years) will give the OSL age in thousand years (Duller et al., 2008; Preusser et al., 2008). OSL dating can be done using different grain sizes of sediment, either mounted as patches of grains on aluminium or steel discs (Fig. 2E) or as single grains, brushed into very small holes on a disc (Fig. 2C, D). As an alternative to grains, slices of rock can be used (e.g. Sohbati et al., 2011; Jenkins et al., 2018). Important is a representative number of sub-samples, which will be analysed using statistical means to get a valid age (Galbraith et al., 1999; Galbraith and Roberts, 2012).

Figure 2: (A) Sampling of sediment in an opaque tube for OSL dating; (B) Luminescence instruments (here Risø Readers) used to date the samples. The picture also shows the photographic read light conditions under which samples are prepared and measured to avoid resetting of the battery-like grains; (C) Sample carousel with single grain discs; (D) Close-up of a single grain discs containing grains in 100 holes (300 µm in diameter); (E) Steel discs containing fine silt size material (4-11 µm). Credit photos: (A) H. M. Roberts, (B)-(D) S. Riedesel, (E) A. M. Zander.

Where can and has OSL dating been applied? –Some examples from past climate research

Luminescence dating can be a valuable geochronological tool in very different climatic parts of the Earth: the terrestrial systems with loess and lake records for example, the glacial land system, with a focus on ice marginal archives and the deep marine archives with long sedimentary records.

Terrestrial archives – loess and lakes

Loess is silt-size (4-63 μm) sediment transported by wind (aeolian transport), which has been exposed to sufficient daylight to fully reset the stored luminescence signal. This makes it favourable for luminescence dating. The Chinese Loess Plateau (CLP) is the Earth’s most important terrestrial climate archive. Changes in the accumulation of loess and/or the occurrence of soil horizons within the loess sequences, give information on changes in past climate (e.g. temperature, wind direction and intensity, precipitation). For a long time it has been considered as a continuous past climate archive (Liu and Ding, 1998). High-resolution OSL dating at different sites across the CLP gave new insights. It showed that the loess record is neither homogenous nor continuous (Stevens et al., 2007; Stevens et al., 2018). Unconformities could be detected and related to erosional processes, disturbances or diagenetic modifications (Roberts et al., 2001; Stevens et al., 2007; Buylaert et al., 2008). The application of OSL dating to loess has also helped to gain knowledge on e.g. variations in wind directions in the past (e.g. the East Asian Monsoon behaviour; Stevens et al., 2006; Kang et al., 2018).

Lake sediments also provide long records of past climate changes. Lamb et al. (2018) established a chronology based on a combination of OSL and radiocarbon dates for the past 150,000 years of Lake Tana in Ethiopia. This chronology helped to infer time spans of favourable climatic conditions for early human migrations. Another example is the late Quaternary chronology of the Xingkai Lake in northeast Asia by Long et al. (2015). It spans the past 130,000 years and shows how important independent age control is when performing geochronological research. The combination of OSL and radiocarbon ages highlights the potential of OSL to date events beyond the age range of radiocarbon (ca. 45,000 years, Walker, 2005).

Remnants of former lakes can also be used as archives, e.g. the beach ridges, marking former shorelines of palaeo-lake systems in the present day Kalahari Desert, bear witness to a wetter climate in the past (Burrough et al., 2009). OSL has been the key tool to establish a 280,000 year chronology of these palaeo-lake high-stands, giving insights into late Quaternary changes between arid and humid phases in southern Africa (Burrough et al., 2009).

The deep sea – Potential and challenges of these long records using OSL

In marine sediments, OSL dating can be used in addition to radiocarbon dating, or to date beyond the range of the latter (Stokes et al., 2003; Olley et al., 2004, Armitage and Pinder, 2017), or where insufficient biogenic carbonate is available. As radiocarbon dating of material in marine sediments can suffer from a reservoir age induced by old carbon in marine water, OSL dating can be a useful alternative (Olley et al., 2004). However, OSL dating of marine sediments can be challenging, since transport and deposition of the sediment under water complicates the bleaching of the sediment grains (Olley et al., 2004, Armitage and Pinder, 2017). Nevertheless, successful OSL research has been conducted in deep-sea environments. For example, Sugisaki et al. (2010) were able to establish an OSL-chronology of sediments from the Okhotsk Sea, including the last glacial-interglacial transition by covering a time span from 140,000 to 15,000 years.

Glacial land forms – Ice marginal features: What can they tell us about glacial advance and retreat?

OSL dating can be used in the cryosphere, e.g. to date relics of past glaciations. Smedley et al. (2016) used single grains of feldspar to date glacial advances during the last glacial maximum (LGM) in Patagonia. While their results for glacial advances at the onset of and during the LGM correlate with other studies in South America, the final glacial advance in their study area at ~15,000 years is later than elsewhere, which may hint towards local topographic and regional climatic factors (precipitation), controlling glacial responses, or preservation issues elsewhere.

The recent development of dating cobbles in glacial contexts not only enables the age determination of glacial features, such as glaciofluvial sediments, it also gives further insights into the transport history of the cobbles prior to their burial (Freiesleben et al., 2015; Jenkins et al., 2018). Cobbles can record the deposition event in a similar way to the one described above for much finer grained sediment. The great advantage of cobbles is their potential to record multiple exposure events (Freiesleben et al., 2015). In the case of a cobble from the Isle of Man, it potentially records the advance and retreat of the Irish Sea Ice Stream (Jenkins et al., 2018).

The examples presented here show the wide applicability of OSL dating to directly date the last exposure of sediment to daylight in various environmental settings. OSL techniques are able to date geological events beyond the age range of radiocarbon and recent developments improve the reliability of OSL dating in geomorphological settings, where resetting of the stored charge might otherwise be challenging.

This post has been edited by the editorial board.


Armitage, S. J., Pinder, R. C., 2017. Testing the applicability of optically stimulated luminescence dating to Ocean Drilling Program cores. Quaternary Geochronology 39, 124-130.

Burrough, S. L., Thomas, D. S. G., Bailey, R. M., 2009. Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews 28, 1392-1411.

Buylaert, J.-P., Murray, A. S., Vandenberghe, D., Vriend, M., De Corte, F., Van den haute, P., 2008. Optical dating of Chinese loess using sand-sized quartz: Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau. Quaternary Geochronology 3, 99-113.

Duller, G. A. T., 2008. Luminescence dating – Guidelines on using luminescence dating in archaeology. English Heritage, 44p.

Freiesleben, T., Sohbati, R., Murray, A. S., Jain, M., al Khasawneh, S., Hvidt, Jakobsen, B., 2015. Mathematical model quatifies multiple daylight exposure and burial events for rock surfaces using luminescence dating. Radiation Measurements 81, 16-22.

Galbraith, R. F., Roberts, R. G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11, 1-27.

Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., Olley, J. M., 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: Part 1, experimental design and statistical models. Archaeometry 41 (2), 339-364.

Jenkins, G. T. H., Duller, G. A. T., Roberts, H. M., Chiverrell, R. C., Glasser, N. F., 2018. A new approach for luminescence dating glaciofluvial deposits – High precision optical dating of cobbles. Quaternary Science Reviews 192, 263-273.

Kang, S., Wang, X., Roberts, H. M., Duller, G. A. T., Cheng, P., Lu, Y., An, Z., 2018. Late Holocene anti-phase change in the East Asian summer and winter monsoons. Quaternary Science Reviews 188, 28-36.

Lamb, H. F., Bates, R., Bryant, C. L., Davies, S. J., Huws, D. G., Marshall, M. H., Roberts, H. M., 2018. 150,000-year palaeoclimate record from northern Ethiopia supports early, multiple dispersals of modern humans from Africa. Scientific Reports 8:1077.

Liu, T., Ding, Z., 1998. Chinese loess and the paleomonsoon: Annual Review of Earth and Planetary Science 26, 111-145.

Long, H., Shen, J., Wang, Y., Gao, L., Frechen, M., 2015. High-resoltuion OSL dating of a late Quaternary sequence from Xingkai Lake (NE Asia): Chronological challenge of the “MIS 3a Mega-paleolake” hypothesis in China. Earth and Planetary Science Letters 428, 281-292.

Olley, J. M., De Deckker, P., Roberts, R. G., Fifield, L K., Yoshida, H., Hancock, G., 2004. Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon. Sedimentary Geology 169, 175-189.

Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., Spencer, J. Q. G., 2008. Luminescence dating: basics, methods and applications. Eiszeitalter und Gegenwart – Quaternary Science Journal 57 (1-2), 95-149.

Roberts, H. M., Wintle, A., Maher, B. A., Hu, M., 2001.Holocene sediment-accumulation rates in the western Loess Plateau, China, and a 2500-year record of agricultural activity, revealed by OSL dating. The Holocene 11 (4), 477-483.

Smedley, R. K., Glasser, N. F., Duller, G. A. T., 2016. Luminescence dating of glacial advances at Lago Buenos Aires (~46° S), Patagonia. Quaternary Science Reviews 134, 59-73.

Sohbati, R., Murray, A. S., Jain, M., Buylaert, J.-P., Thomsen, K. J., 2011. Investigating the resetting of OSL signals in rock surfaces. Geochronometria 38 (3), 249-258.

Stevens, T., Buylaert, J.-P., Thiel, C., Újvári, G., Yi, S., Murray, A. S., Frechen, M., Lu, H., 2018. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site. Nature Communications 9:983.

Stevens, T., Thomas, D. S. G., Armitage, S. J., Lunn, H. R., Lu, H., 2007. Reinterpreting climate proxy records from late Quaternary Chinese loess: A detailed OSL investigation. Earth-Science Reviews 80, 111-136.

Stevens, T., Armitage, S., Lu, H., Thomas, D. S. G., 2006. Sedimentation and diagenesis of Chinese loess: Implications for the preservation of continuous, high-resolution climate records.

Stokes, S., Ingram, S., Aitken, M. J., Sirocko, F., Anderson, R., Leuschner, D., 2003. Alternative chronologies for Late Quaternary (Last Interglacial-Holocene) deep sea sediments via optical dating of silt-sized quartz. Quaternary Science Reviews 22, 925-941.

Sugisaki, S., Buylaert, J.-P., Murray, A. S., Tsukamoto, S., Nogi, Y., Miura, H., Sakai, S., Iijima, K., Sakamoto, T., 2010. High resolution OSL dating back to MIS 5e in the central Sea of Okhotsk. Quaternary Geochronology 5, 293-298.

Walker, M., 2005. Quaternary Dating Methods. John Wiley and Sons, Chicchester, United Kingdom, 307 p.

What can the Cretaceous tell us about our climate?

What can the Cretaceous tell us about our climate?

The Cretaceous

The Cretaceous period features a particularly interesting climatic episode in the Earth’s geological history. It follows the Jurassic Period, better known as the time the dinosaurs inhabited Earth and spanned the period between 145.5 and 65.5 million years ago. The Cretaceous is the last period of the Mesozoic Era, which ends with a well-known mass extinction event. At the end of the Cretaceous, an asteroid hit the Earth in the Yucatan Peninsula, Mexico, forming what is today called the Chicxulub impact crater (2). It has been estimated that half of the world’s species became extinct around this time, but no accurate species count exists for each group of organisms. Figure 1 represents an artistic representation of how we imagine the Cretaceous landscape looked like.The supercontinent Pangea, which already started to rift apart in the preceding period, continued to diverge. By the mid-Cretaceous, Pangea split into several smaller continents and ocean basins (continental configuration illustrated in Figure 2), such as the Pacific Ocean, the proto-Atlantic and the Tethys Sea. The spreading of continents also generated extensive new coastlines resulting in increasing near-shore habitats. Moreover, seasons became more pronounced as the global climate cooled. By the end of the Cretaceous, primordial woods evolved to become more similar to those distributed on Earth today (2).

Figure 2: Much of today’s dry land – most of Europe, the midwest of the USA and Northern Africa- was underwater, due to high sea levels during the Cretaceous. The proto-Atlantic Ocean grew much wider as North and South America rifted apart from Africa and Europe. The Indian continent was still an island drifting northward to encounter the Asian continent. (Source:, visited 14.7.2018)

A stable and warm climate

Another intriguing aspect of the Cretaceous period is the warm and stable climate, with tropical and polar temperatures higher than today, lower gradient from the Equator to the Poles, as well as from the land to the ocean and fewer seasonal extremes. Rainfall and atmospheric greenhouse gas concentrations (e.g. CO2, CH4) were higher in the Cretaceous compared to today explaining partly the relatively warmer climate at the global scale. High temperatures extended into the polar regions have prevented the accumulation of ice sheets and reduced the temperature gradient between the Equator and the Poles. This in turn disrupted the mid- and high latitude wind systems, which affected global temperature distribution and the wind-driven ocean circulation (2,5).

The lack of continuous winds at mid-latitudes prevented ocean currents from forming and transporting heat from the Equator to higher latitudes. In today’s ocean, the Gulf Stream would be an example of such a current, able to transport heat from the Caribbean area all the way to Europe, making winter months in Europe warmer. During the Cretaceous this heat was transported via small to large scale swirls capable to trap heat and transport it to higher latitudes. The dominating “thermohaline circulation”, i.e. the current global ocean circulation, would not develop until the continental configuration was similar to todays.

The Cretaceous Ocean and its chemical state

The chemical state of the Cretaceous ocean was also extremely different. Today, oceans are dominated by oxic (oxygenated) water masses, with the exception of some marginal basins like the Black Sea, fjords, upwelling areas and so-called coastal “anoxic dead zones”. However, during the Jurassic and early Cretaceous episodes local anoxia occurred and this state developed into a global scale phenomenon during the mid-Cretaceous. These Oceanic Anoxic Events (OAEs) represented severe disturbances to the global carbon, oxygen and nutrient cycles of the ocean. One well-known event is the OAE2, which happened during the mid-Cretaceous (120-80 Ma), shown in Figure 3 together with several other OAEs recorded in a sediment core drilled in Northern Germany. The OAE2 was characterized by extreme atmospheric CO2 concentrations, widespread water anoxia and free hydrogen sulfide in the surface ocean (3). Evidence for these global perturbations is recorded in ocean sediments, thus providing an important insight into the Earth’s climate archive. Sediments from this period attributed to OAE2 are known globally for their thick layers of organic-rich black shales. The enhanced accumulation of organic carbon during these extreme events did not only have a significant impact on Cretaceous ocean chemistry and climate, but also played an important role in the formation of oil and gas, over millions of years, which are now extensively exploited as a fossil energy source (4).

The Cretaceous Black Shale

The resulting elevated levels of carbon burial would account for the Cretaceous Black Shale Formation in the ocean basins and has often been related to increased organic matter preservation due to anoxic conditions, increased oceanic productivity in the surface ocean or a combination of both. However, the exact nature and background of the paleo-environment that fostered this massive and almost global deposition of organic carbon-rich sediments is still a matter of debate. Two mechanisms are commonly proposed to explain the prolonged oceanic oxygen depletion during OAEs: first, a decreased oxygen supply to the deep ocean due to weaker ocean circulation and second, an increased oxygen demand in the water column resulting from enhanced primary productivity (1,4).

In the latter mechanism, the high primary production was caused by the increased nutrient availability in the ocean in combination with high temperatures. This has been shown by following the evolution of the nutrient concentration in sediments from the onset of an OAE to the end of it: Nutrients (phosphorous in this case) accumulate in the sediments prior to an OAE, but their concentrations decrease during an anoxic event. This implies that the nutrients were consumed by primary producers (4). As primary producers die and sink as organic matter through the low oxygen concentration water column, one part of the organic matter is degraded, while the other part reaches the ocean floor, where it is buried layer upon layer, creating thick sediment bands with high concentrations of organic matter. These layers show up as dark laminated layer in sediment cores (Figure 3).

Figure 3: The history of Earth can be read from this sediment core. Several transitions between an oxic and anoxic states are visible in this core section (meters 44 to 38 of the Wunstorf core), whereby the black shales represented by the dark laminated layers. This sediment core was taken on land in Northern Germany during the time when this region was under water (mid Cretaceous).
(Source:, visited 14.7.2018)

These black shales strata offer a unique opportunity to study the evolution of biological, chemical and physical processes in sediments. It allows us to investigate the relation between sediment accumulation and the degradation of organic matter over the geological times. This can bring key information on the evolution of carbon sources and sinks and their possible climate feedback on different time scales.

This post has been edited by the editorial board.

  1. Arndt, Sandra, Hans-Jürgen Brumsack, and Kai W. Wirtz. "Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise)." Geochimica et Cosmochimica Acta 70.2 (2006): 408-425.
  2. Harff, Jan, et al. Encyclopedia of Marine Geosciences. Springer, 2016.
  3. Hay, William W. "Evolving ideas about the Cretaceous climate and ocean circulation." Cretaceous Research 29.5-6 (2008): 725-753.
  4. Hülse, Dominik, et al. "Understanding the causes and consequences of past marine carbon cycling variability through models." Earth-science reviews 171 (2017): 349-382.
  5. Weissert, Helmut. "Mesozoic pelagic sediments: archives for ocean and climate history during green-house conditions." Developments in sedimentology. Vol. 63. Elsevier, (2011): 765-792.