CR
Cryospheric Sciences

Sophie Berger

Sophie Berger is a PhD student of the glaciology unit, at the Université Libre de Bruxelles (ULB), Brussels Belgium. She is using various remote sensing data and techniques to investigate the dynamics and stability of the ice shelves in Dronning Maud Land (East Antarctica). She tweets as @SoBrgr.

Image of the Week — Hidden lakes in East Antarctica !

Image of the Week — Hidden lakes in East Antarctica !

Who would have guessed that such a beautiful picture could get you interviewed for the national news?! Certainly not me! And yet, the photo of this englacial lake (a lake trapped within the ice in Antarctica), or rather science behind it, managed to capture the media attention and brought me, one of the happy co-author of this study,  on the Belgian  television… But what do we see on the picture and why is that interesting?


Where was the picture taken?

The Image of this Week shows a 4m-deep meltwater lake trapped 4 m under the surface of the Roi Baudouin Ice Shelf (a coastal area in East Antarctica). To capture this shot, a team of scientists led by Stef Lhermitte (TU Delft) and Jan Lenaerts (Utrecht University) went to the Roi Baudouin ice shelf, drilled a hole and lowered a camera down (see video 1).

Video 1 : Camera lowered into borehole to show an englacial lake 4m below the surface. [Credit: S. Lhermitte]

How was the lake formed?

In this region of East Antarctica, the katabatic winds are very persistent and come down from the centre of the ice sheet towards the coast, that is the floating ice shelf (see animation below). The effect of the winds are two-fold:

  1. They warm the surface because the temperature of the air mass increases during its descent and the katabatic winds mix the very cold layer of air right above the surface with warmer layers that lie above.
  2. They sweep the very bright snow away, revealing darker snow/ice, which absorb more solar radiation

The combination leads to more melting of the ice/snow in the grounding zone — the boundary between the ice sheet and ice shelf — , which further darkens the surface and therefore increases the amount of solar radiation absorbed, leading to more melting, etc. (This vicious circle is very similar to the ice-albedo feedback presented in this previous post).

Animation showing the processes causing the warm micro-climate on the ice shelf. [Credit: S. Lhermitte]

All the melted ice flows downstream and collects in depressions to form (sub)surface lakes. Those lakes are moving towards the ocean with the surrounding ice and are progressively buried by snowfalls to become englacial lakes. Alternatively, the meltwater can also form surface streams that drain in moulins (see video 2).

Video 2 : Meltwater streams and moulins that drain the water on the Roi Baudouin ice shelf. [Credit: S. Lhermitte]

Why does it matter ?

So far we’ve seen pretty images but you might wonder what could possibly justify an appearance in the national news… Unlike in Greenland, ice loss by surface melting has  often been considered negligible in Antarctica. Meltwater can however threaten the structural integrity of ice shelves, which act as a plug of the grounded ice from upstream. Surface melting and ponding was indeed one of the triggers of the dramatic ice shelves collapses in the past decades, in the Antarctic Peninsula . For instance, the many surfaces lakes on the surface of the Larsen Ice shelf in January 2002, fractured and weakened the ice shelf until it finally broke up (see video 3), releasing more grounded ice to the ocean than it used to do.

Of course surface ponding is not the only precondition for an ice shelf to collapse : ice shelves in the Peninsula had progressively thinned and weakened for decades, prior their disintegration. Our study suggests however that surface processes in East Antarctica are more important than previously thought, which means that this part of the continent is probably more vulnerable to climate change than previously assumed. In the future, warmer climates will intensify melt, increasing the risk to destabilise the East Antarctic ice sheet.

Video 3 : MODIS images show Larsen-B collapse between January 31 and April 13, 2002. [Credit:NASA/Goddard Space Flight Center ]

Reference/Further reading

Edited by Nanna Karlsson

Quantarctica: Mapping Antarctica has never been so easy!

Quantarctica: Mapping Antarctica has never been so easy!

One of the most time-consuming and stressful parts of any Antarctic research project is simply making a map. Whether it’s plotting your own data points, lines, or images; making the perfect “Figure 1” for your next paper, or replying to a collaborator who says “Just show me a map!,” it seems that quick and effective map-making is a skill that we take for granted. However, finding good map data and tools for Earth’s most sparsely-populated and poorly-mapped continent can be exhausting. The Quantarctica project aims to provide a package of pre-prepared scientific and geographic datasets, combined with easy-to-use mapping software for the entire Antarctic community. This post will introduce you to Quantarctica, but please note that the project is organizing a Quantarctica User Workshop at the 2017 EGU General Assembly (see below for more details).


[Credit: Quantarctica Project]

What is Quantarctica?

Quantarctica is a collection of Antarctic geographic datasets which works with the free, open-source mapping software QGIS. Thanks to this Geographic Information System package, it’s now easier than ever for anyone to create their own Antarctic maps – for any topic and at any spatial scale. Users can add and plot their own scientific data, browse satellite imagery, make professional-quality maps and figures, and much, much more. Read on to learn how researchers are using Quantarctica, and find out how to use it to start making your own (Qu-)Antarctic maps!

Project Origins

When you make a sandwich, you start with bread, not flour. So why would you start with ‘flour’ to do your science?” — Kenny Matsuoka, Norwegian Polar Institute

Deception Island isn’t so deceptive anymore, thanks to Quantarctica’s included basemap layers, customized layer styles, and easy-to-use cartography tools. [Credit: Quantarctica Project]

Necessity is the mother of invention, and people who work in Antarctica are nothing if not inventive. When Kenny Matsuoka found himself spending too much time and effort just locating other Antarctic datasets and struggling with an expired license key for his commercial Geographic Information System (GIS) software in the field, he decided that there had to be a better way – and that many of his Antarctic colleagues were probably facing the same problems. In 2010, he approached Anders Skoglund, a topographer at the Norwegian Polar Institute, and they decided to collaborate and combine some of the critical scientific and basemap data for Antarctica with the open-source, cross-platform (Windows, Mac, and Linux) mapping software QGIS. Quantarctica was born, and was quickly made public for the entire Antarctic community.

Since then, maps and figures made with Quantarctica have appeared in at least 25 peer-reviewed journal articles (that we can find!). We’ve identified hundreds of Quantarctica users, spread among every country participating in Antarctic research, with especially high usage in countries with smaller Antarctic programs. We’ve been actively incorporating even more datasets into the project, teaching user workshops at popular Antarctic conferences – such as EGU 2017 – and building educational materials on Antarctic mapping for anyone to use.

A great example of a Quantarctica-made figure published in a paper. Elevation, imagery , ice flow speeds, latitude/longitude graticules, custom text and drawing annotations… it’s all there and ready for you to use! [Credit: Figs 1 and 2 from Winter et al (2015)].

What data can I find in Quantarctica?

  • Continent-wide satellite imagery (Landsat, MODIS, RADARSAT)
  • Digital elevation models and/or contour lines of bed and ice-surface topography and seafloor bathymetry
  • Locations of all Antarctic research stations and every named location in Antarctica (the SCAR Composite Gazetteer of Antarctica)
  • Antarctic and sub-Antarctic coastlines and outlines for exposed rock, ice shelf, and subglacial lakes
  • Magnetic and gravity anomalies
  • Ice flow velocities, catchment areas, mass balance, and firn thickness grids
  • Ancient UFO crash sites

…just to name a few!

Four examples of included datasets. From left to right: Ice flow speed, drainage basins, and subglacial lakes; bed topography; geoid height; modeled snow accumulation and surface blue ice areas [Credit: Quantarctica Project]

All of these datasets have been converted, imported, projected to a standard Antarctic coordinate system, and hand-styled for maximum visibility and compatibility with other layers. All you have to do is select which layers you want to show! The entire data package is presented in a single QGIS project file that you can quickly open, modify, save, and redistribute as your own. We also include QGIS installers for Windows and Mac, so everything you need to get started is all in one place. And finally, all of the data and software operates entirely offline, with no need to connect to a license server, so whether you’re in a tent in Antarctica or in a coffee shop with bad wi-fi, you can still work on your maps!

Quantarctica was used in traverse planning for the MADICE Project, a collaboration between India’s National Centre for Antarctic and Ocean Research (NCAOR) and the Norwegian Polar Institute (NPI), investigating mass balance, ice dynamics, and climate in central Dronning Maud Land. Check out pictures from their recently-completed field campaign on Facebook and Twitter! Base image: RADARSAT Mosaic; Ice Rises: Moholdt and Matsuoka (2015); Mapping satellite features on ice: Ian Lee, University of Washington; Traverse track: NCAOR/NPI. [Credit: Quantarctica Project]

Every dataset in Quantarctica is free for non-commercial use, modification, and redistribution – we get explicit permission from the data authors before their datasets are included in Quantarctica, always include any README or extra license/disclaimer files, and never include a dataset if it has any stricter terms than that. We always provide all metadata and citation information, and require that any Quantarctica-made maps or figures printed online or in any publication include citations for the original datasets.

How do I start using Quantarctica?

Quantarctica is available for download at http://quantarctica.npolar.no/. It’s a 6 GB package, so if your internet connection is struggling with the download, just contact us and we can send it to you on physical media. You can use the bundled QGIS installers for your operating system, or download the latest version of QGIS at http://qgis.org/ and simply open the Quantarctica project file, Quantarctica.qgs, after installation.

We’re actively developing Version 3 of Quantarctica, for release in Late 2017. Do you know of a pan-Antarctic dataset that you think should be included in the new version? Just email the Quantarctica project team at quantarctica@npolar.no.

Quantarctica makes it easy to start using QGIS, but if you’ve never used mapping software before or need to brush up on a few topics, we recommend QGIS Tutorials and Tips and the official QGIS Training Manual. There are also a lot of great YouTube tutorial videos out there!

 

Nobody said you could only use Quantarctica for work – you can use it to make cool desktop backgrounds, too! Foggy day in the Ross Island / McMurdo Dry Valleys area? Though it often is, the fog effects image was created using only the LIMA 15m Landsat Imagery Mosaic and RAMP2 DEM in Quantarctica, with the help of this tutorial. [Credit: Quantarctica Project]

Quantarctica Short Course at EGU 2017

Are you attending EGU 2017 and want to learn how to analyze your Antarctic data and create maps using Quantarctica? The Quantarctica team will be teaching a short course (SC32/CR6.15) on Monday, 24 April at 13:30-15:00 in room -2.31. Some basic GIS/QGIS experience is encouraged, but not required. If you’re interested, fill out the registration survey here: https://goo.gl/forms/mLaJg686tZq8bm2N2 and feel free to send any questions or comments to quantarctica@npolar.no. We’ll see you in Vienna!

Edited by Kenny Matsuoka and Sophie Berger

Reference/Further Reading

Data sources

[Read More]

Image of the Week – Apocalypse snow? … No, it’s sea ice!

Image of the Week – Apocalypse snow? … No, it’s sea ice!

Sea ice brine sampling is always great fun, but sometimes somewhat challenging !

As sea water freezes to form sea ice, salts in the water are rejected from the ice and concentrate in pockets of very salty water, which are entrapped within the sea ice. These pockets are known as “brines”.

Scientists sample these brines to measure the physical and bio-geochemical properties, such as: temperature, salinity, nutrient, water stable isotopes, Chlorophyll A, algal species, bacterial number and DNA, partial pressure of CO2, dissolved and particulate Carbon and Nitrogen, sulphur compounds, and trace metals.  All of this helps to better understand how sea ice impacts the atmosphere-ocean exchanges of climate relevant gases.

In theory, sampling such brines is very simple: you just have to drill several holes in the sea-ice ensuring that the holes don’t reach the bottom of ice and wait for half an hour. During this time, the brine pockets which are trapped in the surrounding sea ice drain under gravity into the hole. After that, you just need to sample the salty water that has appeared in the hole. Simple…

…at least it would be if they didn’t have to deal with the darkness of the Antarctic winter, blowing snow, handling water at -30°C and all while wearing trace metal clean suits on top of polar gear…hence the faces!


This photo won the jury prize of the Antarctic photo competition, organised by APECS Belgium and Netherlands as part of Antarctica Day celebrations (1st of December).

All the photos of the contest can be seen here.

Edited by Sophie Berger and Emma Smith


Jean-Louis Tison is a professor at the Université libre de Bruxelles. His activities are focused on the study of physico-chemical properties of « interface ice », be it the « ice-bedrock » (continental basal ice) , « ice-ocean » (marine ice) or « ice-atmosphere » (sea ice) interface. His work is based on numerous field expeditions and laboratory experiments, and on the development of equipments and analytical techniques dedicated to the multi-parametric study of ice: textures and fabrics, stable isotopes of oxygen and hydrogen, total gas content and gas composition, bulk salinity, major elements chemistry…

 

Image of the Week — Looking back at 2016

Image of the Week — Looking back at 2016

Happy New-Yearcorn

I cannot believe that a full year has passed since this very cute pink unicorn wished you a Happy New Year.

Yet, over the past  12 months our blog has attracted more than 16,200 visits.  And the blog analytics show that you, our dear readers, are based not only in Europe but literally all over the world!

With 67 new posts published in only 52 weeks, it’s more than likely that you missed a few interesting ones. Don’t worry, today’s Image Of the Week highlights some of the most exciting content written, edited and published by the whole cryo-team during the year 2016!  

Enjoy and don’t forget to vote in the big EGU Blog competition (see below) !
(Remark
: all the images are linked to their original posts)


Get the most of 2016

Last glaciation in Europe, ~70,000-20,000 years ago [By S. Berger].

The 82 research stations in the Antarctic [By S. Berger].

 

 

 

  • We also launched our new “for dummies” category that aims at explaining complex glaciological concepts in simple terms. The first and most read “for dummies” is all about “Marine Ice sheet instability” and explains why West Antarctica could be destabilised.

Marine Ice Sheet Instability [By D. Docquier].

Three other “for dummies” have been added since then. They unravel the mysteries behind Water Masses, Sea Level and Ice Cores.

  • Drilling an ice core [By the Oldest Ice PhD students]

    Another welcomed novelty of 2016 was the first “ice-hot news” post, about the very exciting quest for the oldest ice in Antarctica. In this post — issued at the same time as the press release —  the 3 PhD students currently involved with the project explain how and where to find their holy grail, i.e. the 1 million year old ice!

The list goes on of course, and I could probably spend hours presenting each of our different posts one by one and explain why every single one of them is terrific. Instead, I have decided to showcase a few more posts with very specific mentions!

 

The oddest place for ice : inside a volcano! [By T. Santagata]

The quirkiest ice phenomenon  : ice balls [By E. Smith].

The most romantic picture : Heart-shaped bubbles for ValentICE’s day [By S. Berger]

The creepiest picture: Blood Falls, Antarctica [By E. Smith]

The funniest post : April Fools “do my ice deceive me” [By S. Berger]

The best incidental synchronisation: The Perito Moreno collapsed the day before our the post went live [By E. Smith]

 

The “do they really do that? ” mention for ballooning the ice [By N. Karlsson]

The best fieldwork fail : Skidoos sinking into the slush [By S. Berger]

The most epic story : Shackleton’s rescue [By E. Smith]

The most puntastic title “A Game of Drones (Part 1: A Debris-Covered Glacier” [By M. Westoby].

The most provocative title : “What an ice hole” [By C. Heuzé]

The soundest post where science is converted to music [By N. Karlsson]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Good resolutions for 2017

The beginning of a new year is a great opportunity to look back at the previous year, and one of the logical consequences is to come with good resolutions for the coming year.  Thinking of a good resolution and then achieving it can however be tricky.  This is why we have compiled a few resolutions, that YOU dear cryo-followers could easily make 🙂

 Cryoblog stronger in the E(G)U blog competition

To celebrate the excellent display of science writing across all the EGU blogs, a competition has been launched.

Olaf the snowman begs you to vote for “the journey of a snowflake”

From now until Monday 16th January, we invite you, the cryo-readers, to vote for your favourite post of 2016, which should be “journey of a snowflake” (second-to last option). I am obviously being totally objective but if you’re not convinced, the little guy on the right might be more persuasive. If you’re really adventurous, you could also consider clicking on other posts to check what they look like, after having voted for the cryo-one, of course.

Get involved

Hopefully by now:

  1. You are convinced that the cryosphere is amazing and that the EGU cryoblog enables you to seize some of the cryo-awesomeness
  2. You have read and elected the “journey of a snowflake”  as the best post of 2016
  3. You would like to contribute to the blog (because you would like to be part of this great team or simply because you think your sub-field is not represented well enough).

Not to confuse you with a long speech, the image below explains how to get involved. We always welcome contributions from scientists, students and professionals in glaciology, especially when they are at the early stage of their career.

Thank you for following the blog!

PS: this is one of my favourite tweets from the EGU cryospheric division twitter account. What is yours?

Edited by Nanna Karlsson

Image of the Week – Climate Change and the Cryosphere

Image of the Week – Climate Change and the Cryosphere

While the first week of COP22 – the climate talks in Marrakech – is coming to an end, the recent election of Donald Trump as the next President of the United States casts doubt over the fate of the Paris Agreement and more generally the global fight against climate change.

In this new political context, we must not forget about the scientific evidence of climate change! Our figure of the week, today summarises how climate change affects the cryosphere, as exposed in the latest assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2013, chapter 4)


Observed changes in the cryosphere

Glaciers (excluding Greenland and Antarctica)

  • Glaciers are the component of the cryosphere that currently contributes the most to sea-level rise.
  • Their sea-level contribution has increased since the 1960s. Glaciers around the world contributed to the sea-level rise from 0.76 mm/yr (during the 1993-2009 period) to 0.83 mm/yr (over the 2005-2009 period)

Sea Ice in the Arctic

  • sea-ice extent is declining, with a rate of 3.8% /decade (over the 1979-2012 period)
  • The extent of thick multiyear ice is shrinking faster, with a rate of 13.5%/decade (over the 1979-2012 period)
  • Sea-ice decline sea ice is stronger in summer and autumn
  • On average, sea ice thinned by 1.3 – 2.3 m between 1980 and 2008.

Ice Shelves and ice tongues

  • Ice shelves of the Antarctic Peninsula have continuously retreated and collapsed
  • Some ice tongue and ice shelves are progressively thinning in Antarctica and Greenland.

Ice Sheets

  • The Greenland and Antarctic ice sheets have lost mass and contributed to sea-level rise over the last 20 years
  • Ice loss of major outlet glaciers in Antarctica and Greenland has accelerated, since the 1990s

Permafrost/Frozen Ground

  • Since the early 1980s, permafrost has warmed by up to 2ºC and the active layer – the top layer that thaw in summer and freezes in winter – has thickened by up to 90 cm.
  • Since mid 1970s, the southern limit of permafrost (in the Northern Hemisphere) has been moving north.
  • Since 1930s, the thickness of the seasonal frozen ground has decreased by 32 cm.

Snow cover

  • Snow cover declined between 1967 and 2012 (according to satellite data)
  • Largest decreases in June (53%).

Lake and river ice

  • The freezing duration has shorten : lake and river freeze up later in autumn and ice breaks up sooner in spring
  • delays in autumn freeze-up occur more slowly than advances in spring break-up, though both phenomenons have accelerated in the Northern Hemisphere

Further reading

How much can President Trump impact climate change?

What Trump can—and can’t—do all by himself on climate | Science

US election: Climate scientists react to Donald Trump’s victory  | Carbon Brief

Which Trump will govern, the showman or the negotiator? | Climate Home

GeoPolicy: What will a Trump presidency mean for climate change? | Geolog

Previous posts about IPCC reports

Image of the Week — Ice Sheets and Sea Level Rise

Image of the Week —  Changes in Snow Cover

Image of the Week — Atmospheric CO2 from ice cores

Image of the Week — Ice Sheets in the Climate

Edited by Emma Smith

Image of the Week — ice tsunamis !

Image of the Week — ice tsunamis !

Tsunami is a word that became world famous after the so-called Christmas tsunami in 2004, when enormous waves hit the shores around the Indian Ocean with disastrous consequences for countries such as Sri Lanka, Thailand, Somalia and many others.

But did you know that tsunamis can be icy?

An ice tsunami is one of the many names associated with ice shoves (or ivu, shore ice override, ice pile-up, ice ride-up). This rare but impressing phenomenon happens when strong winds rapidly push slabs of sea/lake ice towards the shore.

  • Once on shore, the ice shoves can ride up and advance up to a few hundreds metres inland as a large but thinner sheet of ice (Mahoney et al, 2004; Whiteman, 2011)

  • Alternatively, the ice slabs can also pile up, forming a big ridge on the beach that can rise up to 200m high (Mahoney et al, 2004; Whiteman, 2011).

 

Conditions to get an ice shove

  1. Partial thaw: Ice shoves can only happen when the ice has started to melt but has not completely disappeared yet.  Spring is therefore the best time of the year to observe such a phenomenon.
  2. Strong winds: Only strong winds in the direction of the shore can push piles of ice ashore.
  3. Gentle slope of the beach: The gentler the slope of the shore, the less it prevents the ice pile to advance inland, and the more it can pile up.

This is a common phenomenon in Northern Canada and in Alaska but as these places are sparsely populated, the damages it causes are often limited.

Modis satellite images of Lake Huron, Michigan before (top) and after (bottom) strong winds broke up the ice on the lake and caused an ice shove on Linwood. [Credit: NASA earth observatory]

Modis satellite images of Lake Huron, Michigan, before (top) and after (bottom) a wind storm broke up the ice on the lake and caused an ice shove on Linwood (NOTE: the resolution of the image is too coarse to display the ice piled up on the shore) . [Credit: NASA earth observatory]

Reference/further reading

Edited by N. Karlsson

Image of the Week — Where do people stay in the “coolest” place on earth?

Image of the Week — Where do people stay in the “coolest” place on earth?

What word would you use to characterise the Antarctic ?

White?
Windy?
Remote?
Empty?
Inhospitable?
Wild?
Preserved?

While all of these are true it may surprise you to find out that the Antarctic is occupied by humans all year round with almost half of its 82 research stations operating 365.25 days a year!

Just a few hours before the launch of the biennial Antarctic meeting held by the Science Committee on Antarctic Research (SCAR) in Malaysia, we thought it would be perfect timing to check out who is leading research in Antarctica and where…

…but before that let’s have a look first at what makes Antarctica so special!


Antarctica, a very peculiar continent, regulated by the Antarctic treaty

Antarctica is regulated by the Antarctic Treaty that defines this continent as a “natural reserve, devoted to peace and science” (Environmental Protocol, 1991). This means that since the treaty came into force in 1961:

  • the Antarctic environment is fully protected
  • the land doesn’t not belong to any country because the treaty pauses existing territorial claims in Antarctica, as long as it stays in force
  • Antarctica has been demilitarised and no nuclear tests are allowed
  • International collaboration in the name of progressing scientific research is encouraged, with many countries with greater operational capacity aiding those with little or none to allow them to conduct research.

Who is conducting research in Antarctica and where?

Mc Murdo Station on Ross Island (West Antarctica). The station is operated by the US Antarctic Program and can accommodate up to 1,000 people. [Credit: Gaelen Marsden on Wikimedia Commons]

Mc Murdo Station on Ross Island (West Antarctica). The station is operated by the US Antarctic Program and can accommodate up to 1,000 people. [Credit: Gaelen Marsden on Wikimedia Commons]

The map above shows the 82 permanent research stations dotted across the Antarctic. Among those bases, 40 are operated all year long while the others only host scientific research during the Austral summer (November-February). The location and capacity of these stations also varies considerably from one to another. For instance, the US McMurdo station – the biggest scientific base in Antarctica – is settled on an island and is open all year-ong, accommodating up to 1,000 people during summer. On the contrary, a small seasonal station such as the Belgian Princess Elisabeth Station is only open during the summer and can host up to 20 people.

Princess Elisabeth Station, (Dronning Maud Land, East Antarctica). This seasonal station is located hundred of kilometers from the

The Belgian Princess Elisabeth Station, (Dronning Maud Land, East Antarctica). This station is only open during the austral summer and is located hundreds of kilometres away from from the coast. [Credit: René rober – International Polar Foundation]

The research supported by these scientific stations is very broad and covers topic as diverse as sea level rise, climate change, observation of space, biodiversity, etc… Much of this happens in the austral summer when field parties are able to travel from the research stations into even more remote areas of the continent to conduct experiments and install equipment. However, some science, such as meteorology and weather observations takes place all year round no matter how cold, windy and inhospitable the continent may be for those conducting the research.

This is the case of the two “brave” GPSes of Tweetin ice shelf project, which are installed on an ice shelf and tweet their position and movement all year long (you can follow them on @TweetinIceShelf).

Antarctic (stations) fun facts

  •  1 is the number of station operated by an African country : SANAE IV (South Africa)
  • 13 stations is the maximum for one single country (Argentina)
  • -89.2°C is the coldest temperature ever recorded on earth. It was at an Antarctic Station:  Vostok (Russia)
  • 1904 is the opening date of the oldest station still in activity: Orcadas (Argentina)
  • 2014 is the opening date of the youngest station : Jang Bogo (Republic of Korea)
  • 1,000 people is the maximum number of people that a station can accommodate : Mc Murdo (USA)
  • 4087 m is the elevation of the highest station : Kulun (China)
  • 8 is the number of Pokemon Go currently pinpointed in the Antarctic 😀

Here are the countries with at least one scientific base in Antarctica, does yours belong to this list?

Countries with at least one research station in Antarctica, the colors correspond to the colors of the Antarctic stations in the map above [Credit: adapted by Sophie Berger from Wikimedia Commons LINK: https://en.wikipedia.org/wiki/File:Antarctican_bases.png]

Countries with at least one research station in Antarctica, the colours correspond to the colours of the Antarctic stations in the map above [Credit: adapted by Sophie Berger from Wikimedia Commons]

Previous blog posts about Antarctic fieldtrip

Edited by Emma Smith

Image of the Week — Arctic porthole, Arctic portal

Image of the Week — Arctic porthole, Arctic portal

No need to be a superhero to momentarily escape your everyday life!
For that you, can just rely on the EGU Cryosphere Blog, which cares for taking you on trips to all sorts of remote and cool places (OK, OK we have to admit that some of these places are indisputably cold 🙂).

The picture of this week was taken through the porthole of a boat in the middle of Isfjorden, one of the largest fjord in Svalbard .

What is Svalbard and why should we care about it?

Svalbard is not only the mythical home of Phillip Pullman’s armoured bears but it also an archipelago (island cluster) north of Norway, in the Arctic circle. 60 % of its surface is covered by glaciers (1615 in total) which hold enough ice to raise global sea level by 19mm. These glaciers are very varied, covering a wide range of different ice dynamic types. For example – you can find tidewater glaciers (terminating at floating ice shelves in the sea), surging glaciers (which experience cycles of rapid speed-up and slow-down) and ice caps (on the Eastern Islands).

Svalbard is a place for adventurous cryospheric fieldwork related on this blog and the subject of much scientific study, but here are a few reason why this place is significant:

  • Enhanced warming is currently occurring in the Arctic as a result of polar amplification.
  • The glaciers and ice caps in Svalbard are currently losing 5 ± 2 Gigatons of ice per year (IPCC, 2013).
  • Despite its very northern latitude (74° to 81° north), the climate in Svalbard is relatively warmer than in other islands at the same latitude. This due to the influence of the warm north Atlantic current that, in the winter, warm Svalbard up to 20°C, compared to its Russian and Canadian Arctic counterparts.

Does anyone live there?

It may surprise you to know that the Svalbard area counts more polar bears (~3500) than people living there (~2,650) ! Being sparsely populated, however, doesn’t prevent the Archipelago from having human activities such as coal mining, tourism and scientific research.


The image comes from imaggeo, what is it?

You like this image of the week? Good news, you are free to re-use it in your presentation and publication because it comes from Imaggeo, the EGU open access image repository.

(Edited by Emma Smith)

Image of the Week – Mushrooms at zero degrees = hair ice?!

Image of the Week – Mushrooms at zero degrees = hair ice?!

 

When you go down to the woods today you’re in for a big surprise….. hair ice! 

Did you know that there is a type of ice called hair ice? It is shaped like fine, silky hairs and looks like white candy floss. It grows on the rotten branches of broad-leaf trees during humid winter nights when the air temperature drops slightly below 0°C. A 100-year-old theory states that hair ice also needs something else to grow – a fungus – but, until recently, no one had managed to confirm this.

A team of scientists (a physicist, a chemist and a biologist) in Germany and Switzerland have now identified the missing ingredient – the fungus Exidiopsis effusa – after performing a series of experiments (Hofmann et al, 2015).

The biologist, Gisela Preuß, studied samples of hair-ice wood under the microscope and discovered that all of them were home to Exidiopsis effusa. If the fungus was missing or its activity stopped by fungicide or hot water, the hair ice would be missing too. The physicist, Christian Mätzler, studied the physical mechanism that makes hair ice grow in such fine strands. He discovered that the shape of the ice is due to the internal structure (rays) of the wood and growth of the fungus, which together prevent the ice from forming large crystals at the wood surface. The chemist, Diana Hofmann, studied the hair ice itself and identified natural substances produced by the fungus – lignin and tannin – that allow the hair ice to keep its hairy shape for a long time. This collaboration between scientists from different fields really shows the power of putting your heads together!

It took 100 years to confirm the theory because hair ice is rare and hard to spot: it mostly forms during the night, melting when the sun rises.

So…keep an eye out next time you go for an early morning walk in the woods. If you can find hair ice, you are in for a treat!

 


Reference/further reading

 

planet_pressThis is modified version of a “planet press” article written by Bárbara Ferreira and originally published on 22 July 2015 on the EGU website
(Hungarian, Portuguese, Serbian and Spanish versions are also available, why not considering adding a new language to the list? 🙂 )

 

Image of the Week — Glowing Ice

Image of the Week — Glowing Ice

Two weeks ago, the EGU General Assembly was coming to an end in Vienna. With over 16,500 participants, this year’s edition was bigger and more varied than ever (e.g check out this good overview of the science-policy short course, published 2 days ago on geolog). The week was particularly fruitful for the cryospheric sciences and to mark this we have cherry-picked one of the winning picture of the EGU photo contest 2016 as our image of this week. It’s great that an image of the cryosphere is a winner in this competition and we are pleased to see that it isn’t only us that go bananas for pictures of ice!

What do we see?

The beautiful shot shows a stranded block of ice on the shore the glacial lagoon Jökulsárlón, south-east Iceland. Ice calves off Breiðamerkurjökull, an outlet glacier which flows out from Vatnajökull, the ice cap which makes up the largest ice body of Iceland. Jökulsárlón developed as Breiðamerkurjökull retreated away from the Atlantic ocean (into which it flows) and the lagoon continues to grow in size as the glacier continues to retreat (see image below).

Panorama of the Jökulsárlón glacial lake, Iceland, 2010. [Credit: Ira Goldstein (via wikimedia commons)]

Panorama of the Jökulsárlón glacial lake, Iceland, 2010. [Credit: Ira Goldstein (distibuted via wikimedia commons)]


The image comes from imaggeo, what is it?

You like this image of the week? Good news, you are free to re-use it in your presentation and publication because it comes from Imaggeo, the EGU open access image repository.

(Edited by Emma Smith)

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: