GeoLog

GeoLog

Shape the EGU 2018 scientific programme: Call-for-sessions is open!

Shape the EGU 2018 scientific programme: Call-for-sessions is open!

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance!

From today, until 8 Sep 2017, you can suggest:

  • Sessions (with conveners and description), or;
  • Modifications to the existing skeleton programme sessions
  • NEW! Suggestions for Short courses (SC) will also take place during this period
  • From now until 18 January 2018, propose Townhall and spinter meetings

Explore the EGU 2018 Programme Groups (PGs) to get a feel for the already proposed sessions and to decide which PG would be the best fit for your session. When proposing a session, make sure you consider gender diversity (i.e. is there at least one female convener?), diversity in countries/institutes, and the inclusion of early career scientists as conveners. A minimum of three conveners per session is generally desirable.

Does your idea for a session fall under the remit of two (or more) PGs? Co-organization is possible and encouraged between PGs! Put your session proposal into one PG, and you will be able to choose other PGs that you believe should be approached for co-organization.

A new Programme Group, Interdisciplinary Events (IE)was introduced in 2016. IE looks for links between disciplines in a coordinated and coherent effort, trying to create new approaches that would not be possible if handled separately. IE has four sub-programme groups that highlight new themes each year. If you plan to propose an Interdisciplinary Event, please submit your proposal in Programme group IE and indicate relevant other Programme groups in the session description or comment box. For IE sessions we kindly ask to identify another Programme group that becomes the scientific leader of the event. Accepted IE sessions will be part of the session programme of the scientific leader in addition to the IE programme.

The PG officers are on-hand to answer questions about the appropriateness of a specific session topic, so don’t hesitate to contact them if you have queries! You can also find more information about the call for sessions (and the orgaisation of the scientific programme in general) on the EGU 2018 website.

The EGU’s 2018 General Assembly, takes place in Vienna from 8 to 13 April, 2018. For more news about the upcoming General Assembly, you can also follow the offical hashtag, #EGU18, on our social media channels.

Imaggeo on Mondays: Nor’Wester in the Southern Alps of New Zealand

Imaggeo on Mondays: Nor’Wester in the Southern Alps of New Zealand

Stephan Winkler’s 2017 Imaggeo Photo Contest finalist photo showcases an unusual weather phenomenon…

The image shows a typical weather situation in the Southern Alps of New Zealand with a moist, westerly airflow pushing over the Main Divide [which separates the water catchments of the more heavily populated eastern side of the island from those on the west coast] to create a typical foehn wind [dry and warm winds which form on the downside of a mountain range] pattern (locally called Nor’Wester) in the region. Immediately west of this Main Divide, annual precipitation of up to 15,000 mm has been estimated.

The upper part of Tasman Glacier, as other glaciers around and immediately east of the Main Divide, receive impressive amounts of snow due to an overspill effect and can still be regarded as maritime.

In the image, however, the situation is displayed when right at the Main Divide the clouds disappear due to increasing temperatures when flowing over the Divide. The foehn wind developing with such weather pattern can be very strong. However, the image nicely shows how the glaciation of the central Southern Alps is influence by the availability of moisture and the dynamic character of the regional climate.

Description by Stephan Winkler (Senior Lecturer in Quaternary Geology and Palaeoclimatology at the University of Canterbury), as published previously on imaggeo.egu.eu

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Imaggeo on Mondays: Sediments make the colour

Imaggeo on Mondays: Sediments make the colour

Earth is spectacularly beautiful, especially when seen from a bird’s eye view. This image, of a sweeping pattern made by a river in Iceland is testimony to it.

The picture shows river Leirá which drains sediment-loaded glacial water from the Myrdalsjökull glacier in Iceland. Myrdalsjökull glacier covers Katla, one of Iceland’s most active and ice-covered volcanoes.

A high sediment load (the suspended particles which are transported in river water) is typical for these glacial rivers and is visible as the fast-flowing glacial river (on the right of this image) appears light brown in colour. The sediment is gradually lost in the labyrinth of small lakes and narrow, crooked connections between lakes as can be seen as a gradual change in colour to dark blue.

The sediment load, height of the water  and chemistry of this and other glacial rivers are measured partly in real-time by the Icelandic Meteorological Office. This is done for research purposes and in order to detect floods from subglacial lakes that travel up to several tens of kilometers beneath the glacier before they reach a glacial river.

These glacial outburst floods do not only threaten people, livestock and property, but also infrastructure such as Route 1, a circular, national road which runs around the island. They occur regularly due to volcanic activity or localized geothermal melting on the volcano, creating a need for an effective early-warning system.

Advances in the last years include the usage of GPS instruments on top of a subglacial lake and the flood path in order to increase the early-warning for these floods. In 2015, the GPS network, gave scientists on duty at the Icelandic Meteorological Office 3.5 days of warning before one of the largest floods from western Vatnajökull emerged from beneath the ice.

The peak discharge exceeded 2000 m3/s,  which is comparable to an increase in discharge from that of the Thames to that of the Rhine.  This flood was also pioneeringly monitored with clusters of seismometers, so called arrays (from University College Dublin & Dublin Institute for Advanced Studies, Ireland), that enabled an early-warning of at least 20 hours and allowed to track the flood front merely using the ground vibrations it excited. The flood propagated under the glacier at a speed of around 2 km/h; so assuming you can keep up the speed over nearly a day you can escape the flood by walking while it is moving beneath the glacier.

Related publications about the tracking of these subglacial floods will emerge in the published literature soon (real time update available at www.evapseibl.wordpress.com).

By Eva Eibl, researcher at the Dublin Institute for Advanced Studies.

Thanks go to www.volcanoheli.is who organised this trip.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

GeoSciences Column: Is smoke on your mind? Using social media to assess smoke exposure from wildfires

GeoSciences Column: Is smoke on your mind? Using social media to assess smoke exposure from wildfires

Wildfires have been raging across the globe this summer. Six U.S. States, including California and Nevada, are currently battling fierce flames spurred on by high temperatures and dry conditions. Up to 10,000 people have been evacuated in Canada, where wildfires have swept through British Columbia. Closer to home, 700 tourists were rescued by boat from fires in Sicily, while last month, over 60 people lost their lives in one of the worst forest fires in Portugal’s history.

The impacts of this natural hazard are far reaching: destruction of pristine landscapes, costly infrastructure damage and threat to human life, to name but a few. Perhaps less talked about, but no less serious, are the negative effects exposure to wildfire smoke can have on human health.

Using social media posts which mention smoke, haze and air quality on Facebook, a team of researchers have assessed human exposure to smoke from wildfires during the summer of 2015 in the western US. The findings, published recently in the EGU’s open access journal Atmospheric Chemistry and Physics, are particularly useful in areas where direct ground measurements of particulate matter (solid and liquid particles suspended in air, like ash, for example) aren’t available.

Particulate matter, or PM as it is also known, contributes significantly to air quality – or lack thereof, to be more precise.  In the U.S, the Environment Protection Agency has set quality standards which limit the concentrations of pollutants in air; forcing industry to reduce harmful emissions.

However, controlling the concentrations of PM in air is much harder because it is often produced by natural means, such as wildfires and prescribed burns (as well as agricultural burns). A 2011 inventory found that up to 20% of PM emissions in the U.S. could be attributed to wildfires alone.

Research assumes that all PM (natural and man-made) affects human health equally. The question of how detrimental smoke from wildfires is to human health is, therefore, a difficult one to answer.

To shed some light on the problem, researchers first need to establish who has been exposed to smoke from natural fires. Usually, they rely on site (ground) measurements and satellite data, but these aren’t always reliable. For instance, site monitors are few and far between in the western US; while satellite data doesn’t provide surface-level concentrations on its own.

To overcome these challenges, the authors of the Atmospheric Chemistry and Physics paper, used Facebook data to determine population-level exposure.

Fires during the summer of 2015 in Canada, as well as Idaho, Washington and Oregon, caused poor air quality conditions in the U.S Midwest. The generated smoke plume was obvious in satellite images. The team used this period as a case study to test their idea.

Facebook was mined for posts which contained the words ‘smoke’,’smoky’, ‘smokey’, ‘haze’, ‘hazey’ or ‘air quality’. The results were then plotted onto a map. To ensure the study was balanced, multiple posts by a single person and those which referenced cigarette smoke or smoke not related to natural causes were filtered out. In addition, towns with small populations were weighted so that those with higher populations didn’t skew the results.

The social media results were then compared to smoke measurements acquired by more traditional means: ground station and satellite data.

Example datasets from 29 June 2015. (a) Population – weighted, (b) average surface concentrations of particulate matter, (c) gridded HMS smoke product – satellite data, (d) gridded, unfiltered MODIS Aqua and MODIS Terra satellite data (white signifies no vaild observation), and (e) computer simulated average surface particulate matter. Image and caption (modified) from B.Ford et al., 2017.

The smoke plume ‘mapped out’ by the Facebook results correlates well with the plume observed by the satellites. The ‘Facebook plume’ doesn’t extend as far south (into Arkansas and Missouri) as the plume seen in the satellite image, but neither does the plume mapped out by the ground-level data.

Satellites will detect smoke plumes even when they have lifted off the surface and into the atmosphere. The absence of poor air quality measurements in the ground and Facebook data, likely indicates that the smoke plume had lifted by the time it reached Arkansas and Missouri.

The finding highlights, not only that the Facebook data can give meaningful information about the extend and location of smoke plume caused by wildfires, but that is has potential to more accurately reveal the air quality at the Earth’s surface than satellite data.

The relationship between the Facebook data and the amount of exposure to particular matter is complex and more difficult to establish. More research into how the two are linked will mean the researchers can quantify the health response associated with wildfire smoke. The findings will be useful for policy and decision-makers when it comes to limiting exposure in the future and have the added bonus of providing a cheap way to improve the predictions, without having to invest in expanding the ground monitor network.

By Laura Roberts, EGU Communications Officer

References

Ford, B., Burke, M., Lassman, W., Pfister, G., and Pierce, J. R.: Status update: is smoke on your mind? Using social media to assess smoke exposure, Atmos. Chem. Phys., 17, 7541-7554, https://doi.org/10.5194/acp-17-7541-2017, 2017.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: