Last night, I was honoured to have spoken at the final evening lecture at the Cambridge Science Festival, along with Nick Crumpton, Anjali Goswami, Rob Asher, and Stephanie Pierce, about why palaeontology is important. Below is a rough transcript of some of what my talk was about. Unlike the others, I didn’t discuss my own research. Instead, by general gist was that although palaeontology is useful in addressing some of the greatest scientific questions of our time, like the evolution and history of life on Earth, the current narrow framing of science in terms of impact is being quite detrimental to creativity and exploratory science. As such, should palaeontology be more focused on its emotive qualities, and be used as a ‘hook’, or ‘gateway’ into the other fields of science?
How do the chemical ghosts of dinosaurs help their preservation?
For some years now, Mary Schweitzer and her team have been researching the idea that organic molecules can be preserved for millions of years, specifically within dinosaurs. They have used a plethora of chemical and biotechnological techniques to demonstrate that, within animals like Tyrannosaurus rex, it is possible to find the residue of structures such as blood vessels and even proteins. Naturally, her research has been met with a whole wad of stiff resistance from the scientific community, seemingly for no other reason than “We don’t like the sound of that..”. Scientific rigour ftw!
Theropod skulls: a note of caution
Morphometrics is a horrible word, but refers to a technique that is gaining increased traction in palaeontology in recent years. It essentially is a way of measuring anatomy, or specific aspects of anatomy. An extension of it is called geometric morphometrics, and this relies on using co-ordinate points on fossils to analyse things like shape variation.
The newly minted Dr Christian Foth had a study out earlier this year that did a kind of meta-analysis of morphometrics, using theropod skulls (the group including dinosaurs like T. rex and Troodon, as well as modern birds) as an example. A lot of research has gone into using morphometrics to look at patterns in theropod skull variation through time, as looking at these evolutionary patterns is not only awesome, but can also tell us about their ascent to success through time.
It’s just a flesh wound!
Fossils, as we typically think about them, tell us about the death of an animal. The teeth, bones, shells, fragmented pseudopods and other weird and wonderful bits of carcass all only ever reflect one thing: a permanent geological limbo. These types of fossil are known as body fossils. The other major group of fossils, that are generally less common, less researched, less known about, but arguably more important for guiding our understanding of the history of life on Earth, are trace fossils. The study of trace fossils is called ichnology, and the fossils don’t represent death; they represent life, behaviour, activity. They can paint us a picture of a particular event in time, a scene from a play with ghosts of the actors and decayed fragments of script. We’re the audience and the directors, and we have to fill out the act, using the trace fossils draw the concluding freeze frame.