Geology for Global Development

mining

Necessary Evils in Transitioning to a Sustainable Future

Necessary Evils in Transitioning to a Sustainable Future

Robert Emberson can’t help but wondering how geoscience, whilst having great potential for helping sustainable development, has been fueling polluting industries for centuries. Should geoscientists shy away completely from engaging with traditional industries? What are their roles and geoscientists’ roles in transitioning to a more sustainable world? [Editor’s note: This post reflects Robert’s personal opinions. These opinions may not reflect official policy positions of Geology for Global Development.]

It’s often a pleasure to write about the intersection of geology and sustainable development. Learning about ways in which earth science can positively impact the path towards a more sustainable world reinforces my perception of geology as a science that can really make the world a better place in the upcoming decades. However, that sunny perspective occasionally slips when I remember that earth science has for several centuries also informed the most polluting industries on the planet – industries that are deeply unsustainable. Fossil fuels, and the extractive industries more broadly, rely fundamentally on geological knowledge; perhaps we as geologists need to reckon more carefully with our role on both sides of the sustainability coin.

A conversation I had last week serves as an illustrative example. At a meeting with some geotechnical engineers from Canada, we fell to discussing the impacts of natural hazards – landslides in particular – on oil pipelines. One of the engineers explained that in British Columbia alone, around 100 million dollars is spent annually to mitigate the risk of damage to pipelines from geological hazards. That number astonished me, and my first reaction was of horror; how could this much money be poured into maintaining and supporting the oil industry, particularly in Canada where it is in part supported by the wildly unsustainable tar sands mining?

If you’re an earth scientist with an interesting in achieving a more sustainable world, like me, then it is worth asking where you see yourself in that transition.

At the same time, without geologists acting as experts to mitigate the risk from natural hazards, the pipelines could be destroyed and the oil spill out into the ecosystem. The devastating impact from oil spills does diminish the social license of a fossil fuel company to operate, but even a number of high profile spills has not prevented drilling in the Gulf of Mexico, nor the tar sands mining itself. So are the geologists involved in assessing a pipeline to prevent natural hazards helping a fossil fuel company – and as such slowing the transition to sustainable energy – or reducing damage to pipeline-adjacent environments?

Even the transition to sustainable energy entails a lot of ‘necessary evils’ that will be supported by geologists. Renewable energy has a vast need for rare earth elements, particularly to create solar panels and batteries. These elements must be extracted since even with a fully circular economy we would still need to scale the mining of rare metals by several dozen times to provide enough renewable energy to fully replace fossil fuels. Rare earth elements, including Neodymium that is integral to batteries, are often found in conjunction with radioactive elements, meaning that the mining process produces extensive dangerous waste. This is not to mention the natural hazard risks associated with mining tailings dams that have collapsed on a number of occasions in recent years.

Mining for both rare metals and fossil fuels also present opportunities for corruption and abuses, as the ore deposits and oil fields are often located in or near developing countries, which may lack the capacity to effectively negotiate fair and sustainable contracts with mining and oil companies. This kind of systemic abuse is part of the so-called ‘resource curse’, where countries with large natural resource reserves tend to have lower economic development than others without. While not inevitable, this effect has major implications for sustainability in those countries that provide resources.

Given the rapid pace of the transition needed from fossil fuels to renewable energy – according to many researchers we should be aiming to be fossil-free by mid-century – there isn’t much time to transform the mining practices to avoid these issues, and we likely must accept that mining will be a vital part of the process. The expertise of geologists will be essential to develop these mining operations, as well as mitigating the impacts. Geologists may wish to keep their hands clean when it comes to sustainability – but they may be needed to offset the worst of it, instead.

If you’re an earth scientist with an interesting in achieving a more sustainable world, like me, then it is worth asking where you see yourself in that transition. We often think that supporting the extractive industries that have allowed us to use resources at a rate faster than we can sustain is the wrong step to achieving the SDGs, but is it better to work within or alongside them to improve their practices and limit the damage they can do? Geological knowledge will be needed by these companies; I’d argue it’s better if the people providing it are aware of the implications for sustainability.

Reprinted from Robert Emberson’s personal blog with permission from Robert Emberson. Robert writes about cutting edge questions and techniques in geoscience today www.robertemberson.com

**This article expresses the personal opinions of the author (Robert Emberson). These opinions may not reflect an official policy position of Geology for Global Development. **

A mining state in Brazil, without geological knowledge? On the value of science communication

A mining state in Brazil, without geological knowledge? On the value of science communication

As the theme of this month is science communication, I’d like to share some of my own experiences with geoscience communication and public perception of geosciences.

I was born and raised in Minas Gerais – the most traditional mining state of Brazil. Nowadays it is internationally recognized for recent environmental disasters such as the failure of the Brumadinho and Fundão tailings dams. I studied Geological Engineering in Ouro Preto – where the Brazilian Gold Rush started, which was responsible for the establishment of the city. Until the present day, mining – especially iron ore – is the most important economic input for the municipality. Despite all the history and mining tradition, many people have no idea of what geology is about. I had no idea before entering university.

A study (Annals page 462) on public perception of geosciences was carried out in Campo Belo, a town located in the southwest region of Minas Gerais with 54.000 inhabitants, almost 400 high school students from public and private schools and their science teachers. The results have shown that the students struggled to answer simple questions regarding geology (such as the approximate age of the Earth or naming one mineral) and they were unable to relate Earth Sciences with the environment surrounding them, which came as a surprise to the teachers. Despite being local, this study may give us a hint on the perception of geosciences in Minas Gerais.

Why is connecting the community with geological knowledge so important?

Geology is the basis of everything! To produce the food we eat we need soil, water, mineral fertilizers. For housing, we need resources such as steel, cement, gravel, sand, and we need to choose appropriate sites for construction, avoiding areas with a high risk of geohazards like earthquakes, landslides or flooding. We need mineral resources for developing technologies and green energy. Some places on Earth depend almost exclusively on groundwater – so hydrogeological knowledge is crucial. Summing up – geology is in everything!

Bringing this perception to society is vital to promote conscious consumption and recycling practices (since resources are finite), improve communities’ resilience, help urban planners… just to cite a few.

So, how to communicate science effectively?

In my context (Minas Gerais – Brazil), I see that geology is not tangible for the biggest part of the population. Besides, communication is neglected by scientists. Therefore, after researching, attending conferences and talking to people from diverse backgrounds I think the best way to bridge scientists and population is, first of all, to understand the target audience (background, language, culture, customs, etc). After that, decide if you are the most appropriate person to access that community. Try to simplify the vocabulary and avoid jargon. Make a presentation that is clear, simple, illustrative, fun and scientific, if possible.

Science communication has the power to shorten distances, connect people, empower communities, work towards disaster risk reduction and promote the value of geological resources and heritage. Let’s bring geological knowledge beyond the university walls!

 

New mining frontiers: Digging into the unknown

New mining frontiers: Digging into the unknown

While climate change occupies the headlines as our biggest long-term concern for sustainability,  there may well be further anthropogenic challenges that arise in the next century as we disrupt the delicate interplay of natural ecological and geological cycles to satisfy the need for resources of our ever-growing population. The mining industry makes for a pertinent example: it sits on the verge of new key locations for digging – from the deep ocean to deep space – the consequences of which may not be fully explored.

The shift to a low-carbon economy is likely to entail an increase in demand for a wide variety of minerals. A 2017 report from the World Bank highlights the growth in demand for Lithium, Platinum and Lead, for new battery technology and rare earth element demand for solar and wind technology is also likely to increase.

As demand for these metals and resources rises, the cost and difficulty of extracting them rises too. Millennia of mining have exhausted the easy-to-access deposits for most metals, and the ratio of exploration sites that turn into actual mines is in the order of 1 in 1000. Combined with a decline in the overall quality of ore that is mined, it’s not hard to see why mining industry strategists are looking to previously unusable locations for their new mining ventures.

Geologists have known for a long time that the sea floor contains extensive mineral deposits of a wide variety of types; from ferro-manganese nodules to ores linked to submarine volcanism, economic minerals are spread across the global ocean floor. Until recently, the economics of dredging these sea beds for minerals have not been favourable, and technology has been too rudimentary to make an effective industry out of this approach. Now, however, prices and demand for these minerals are high enough that seafloor mining is beginning to take place in a few locations around the world.

Extraction like this could, of course, have major consequences. Biodiversity in the deep ocean is, even today, poorly understood, so strip mining these systems before we explore them fully could cause untold damage. At a small scale, this kind of mining might only have more limited, local impacts, but for the first time in the history of human society we have the capability to affect biological systems and geological cycles at a global scale, to a degree that might have significant and deleterious effects.

For example, mining waste on land can lead to contamination of local water supplies with acidic runoff. Deep sea mining could similarly lead to acidification of sea water, which could have far reaching consequences. Marine creatures living in the ocean are often very finely tuned to the chemistry of the water they’re bathed in; even small changes in acidity have been linked to increased coral bleaching and death. The risk of heavy metal pollution has also been pointed out from sand and mud kicked up by mining activity as it disturbs the sea bed; these toxic metals could cause problems both the sea life and to humans, as the fishery stocks would become increasingly exposed to heavy metals. The global extent of ocean currents mean that these effects wouldn’t be limited to the vicinity of the mining, as chemicals would be mixed into the whole ocean over time.

Unlike mining on the surface, the spread of this kind of pollution could be truly global; ocean currents could eventually spread the pollutants, and the mining itself would hardly be limited to a specific locality. Humans are poorly positioned to deal with this kind of crisis; a negative impact on the ocean – a global resource, not owned by any individual nation state – is a classic ‘tragedy of the commons’, much like carbon dioxide accumulation in the atmosphere. Given the lack of ownership of the oceans, individual states or mining companies lack strong incentives to regulate the exploitation of such sea-floor resources. Moreover, the globalised nature of the extractive industry means this could be a truly significant impact; the combined revenue of the top 40 surface mining companies is approximately half a trillion dollars, dwarfing all but the largest national economies, affording such corporations major financial clout to explore and develop mining on the sea floor.

At the dawn of the fossil fuel era in the Industrial revolution, the risks of burning coal, and later oil and gas, were poorly understood in comparison to today. Some authors suggest that since we are now much more aware of environmental issues, we are better placed to assess the future risks and rewards of deep sea mining than the earlier resources for which we mined and drilled.

It is perhaps worth pointing out, though, that with the range out impacts still poorly constrained even as dredging begins, it is incumbent upon geologists to explore and quantify the potential risks; academic research must keep pace with the growth of industry.

Even if deep sea mining does not have major, long-lasting impacts, there is one other mining frontier for which the risks are nearly totally unconstrained: asteroids.

It may sound like science fiction, but serious consideration is being given to mineral resources on near Earth asteroids. Given their potential value (some estimates – of the asteroid Psyche suggest mineral resources worth a quintillion dollars – an amount of money that’s basically inconceivable), it’s not surprising that enterprising drillers are looking up, as well as to the sea floor. Again, though, research into the potential geological hazards needs to be undertaken well before such ventures are carried out.

Our ever increasing environmental footprint has the potential to spread to new and poorly studied horizons, and we should endeavour not to make the same mistakes as we did with fossil fuels.

Robert Emberson is a science writer, currently based in Vancouver, Canada. He can be contacted via Twitter (@RobertEmberson) or via his website (www.robertemberson.com).

**This article expresses the personal opinion of the author. These opinions may not reflect official policy positions of Geology for Global Development.**

Circular economy of metals and responsible mining

Circular economy of metals and responsible mining

In today’s post, Bárbara Zambelli, considers how we can transition business models towards a more sustainable way of living, manufacturing and consuming.

As I mentioned before in my post about Urban Geology and Underground Urbanisation, according to the UN report, the current world population of 7.6 billion is expected to reach 8.6 billion in 2030 and 9.8 billion in 2050. In addition, the percentage of the world’s population living in urban areas is growing steadily. In this scenario, it is possible to state that population growth and urbanisation are strongly correlated to mineral and metal consumption. In developed countries, the demand for metals is expected to remain strong to keep up with modern technologies and, in developing countries, due to rapid industrialisation and urbanisation.

Minerals and metals are required as materials for infrastructure and constructions (e.g. aggregates, cement, iron, steel, aluminium, copper, alloys), implements for agriculture (e.g. phosphorus and limestone) and essential components of “green” technologies such as solar panels and wind energy (lithium, cobalt, cadmium, REE). The increased consumption we face nowadays requires a great amount of metals which cannot be supplied by natural resources. We already consume more than we can replace and our finite resources are being depleted.

In this context, circular economy represents a way of conceptualizing and operationalizing the transition of business models towards a more sustainable way of living, manufacturing and consuming.

What is circular economy?

Generally, it can be understood as a “cyclical closed-loop system”.

The United Nations Environmental Programme defines circular economy as “one which balances economic development with environmental and resource protection, with the aims to ‘design out’ waste, return nutrients and recycle durables, using renewable energy to power the economy”.

A really interesting paper discusses the concepts and applications of circular economy in Global context, its tensions and limitations.

The authors proposed the redefinition for circular economy as “an economic model wherein planning, resourcing, procurement, production and  reprocessing are designed and managed, as both process and output, to maximize ecosystem functioning and human well-being”.

Circular economy opposes the model of linear economy, in which natural resources are turned into waste via production. It assumes unlimited supply of natural resources and unlimited capacity of the environment to absorb waste. On the other hand, circular economy is conceived as having no net effect on the environment, furthermore, it ensures little generation of waste during the production process. The circular economy relies on the idea of recycling products, using waste as resources, helping to tackle unsustainable patterns of production and consumption.

China is the pioneer in the implementation and development of circular economy strategy at national level. With almost 1.4 billion people (around 19% of the world figure), it is of vital interest worldwide that China adopts economic and sustainable business practices. Moreover, other parts of the world are adopting the concept of circular economy to keep resources in economic use for as long as possible. To give some examples, there is the UK initiative Ellen MacArthur Foundation, founded in 2010. In 2014, the European Commision launched  their own programme named Towards a Circular Economy: a zero waste programme for Europe. In Brazil also there are projects like this, developed into the Federal University of Santa Catarina to promote the circular economy.

However circular economy may seems to solve our problems regarding raw materials and metals supply, that are some important points to highlight. It is crucial to take into account the metal cycles and flows in the system of each metal to understand the environmental impacts associated to each phase of the cycle, since raw material extraction to the end of life. Another important feature is that circular economy relies on metallurgy, technology and understanding of product design (mineralogy). The recovery rate of each metal depends on the combination of those three factors. In addition, there are some companies recycling atoms for some metals, although these processes are energy-intensive and recover the metals part-only.

Despite the idea of designing products that last much longer appears useful, longevity is not always efficient ecologically. The issue of flux should be central and procrastinating the cycle through exotic chemistry may not be an appropriate strategy.

Finally, even though circular economy has an amazing potential for reducing the need of raw materials, stop mining primary resources is nearly impossible. In this manner, we should promote responsible mining when circular economy is not applicable.