Geology for Global Development

Climate change

What is happening after the Fuego eruption in Guatemala? Is climate migration a bad thing? This and more in Jesse Zondervan’s June 2018 #GfGDpicks #SciComm

What is happening after the Fuego eruption in Guatemala? Is climate migration a bad thing? This and more in Jesse Zondervan’s June 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

Everything about the Fuego eruption

At the start of this month, Guatemala’s Fuego volcano erupted explosively, costing many lives and destroying properties and infrastructure.

Professor Handley from Macquarie University explains why the eruption was so disastrous, while Professor Little notes the recovery efforts Guatemalans make on their own, without much government input. Sophie Brockmann delves into history and recovers the cultural significance and political intricacies of Guatemalan dealings with volcanoes.

Climate migration: is it a bad thing?

While the world wakes up to the magnitude of climate migration, a key question we will need to ask is: does climate migration pose a problem or an opportunity to climate adaptation? As always, knowledge is power: a team of New York scientists has modelled future migration due to sea level rise in Bangladesh.

Drought: South Africa out, India in

Drought seems to be a trendy topic this month. South Africa has moved out of the national state of drought disaster and is moving on to resilience. At the same time, India is approaching a long term water crisis and a map of desertification by the EU Joint Research Centre shows building pressures on the world’s resources.

Somewhat reassuring is the opportunity for mitigation that MIT researchers give us. They conclude that climate action can limit Asia’s growing water shortages.

This month a lot was written on climate change adaptation, but as well as disaster risk reduction and sustainability. I would like to highlight this one question: What’s the right goal – resilience, well-being or transformation?

Go ahead and explore:

The Fuego Volcano Eruption and Adaptation

Fuego volcano: the deadly pyroclastic flows that have killed dozens in Guatemala at The Conversation

How Guatemala has dealt with volcanoes over the centuries by Sophie Brockmann at The Conversation

From Kilauea to Fuego: three things you should know about volcano risk by Heather Handley at The Conversation

After volcano eruption, Guatemalans lead their own disaster recovery by Walter E. Little at The Conversation

Migration due to Climate Change and Natural Hazards

Problem to opportunity: migration in times of climate change by Arthur Wyns at The Ecologist

World wakes up to climate migration by Harjeet Singh at India Climate Dialogue

Universal migration predicts human movements under climate change by Simon Davies at Physics World

How Will People Move as Climate Changes? At State of the Planet

Droughts

India faces worst long term water crisis in its history -government think tank at Thomson Reuters Foundation

National state of the drought disaster expires at South Africa news

Is Australia’s current drought caused by climate change? It’s complicated at The Conversation

New World Atlas of Desertification shows unprecedented pressure on planet’s resources at the European Commission Joint Research Centre

Climate action can limit Asia’s growing water shortages at ScienceDaily

Sustainability

Science migrations hold the stage at èStoria, Gorizia at The World Academy of Sciences

What’s the right goal – resilience, well-being or transformation? By Laurie Goering at Thomson Reuters Foundation

Climate Change Adaptation

Alien apocalypse: Can any civilization make it through climate change? At ScienceDaily

Economic models significantly underestimate climate change risks at the London School of Economics and Political Science

Better be safe than sorry: Economic optimization risks tipping of Earth system elements at ScienceDaily

 

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev& Facebook.

Climate migration needs to be predicted and planned now. Geoengineering can slow down sea level rise but could also lead to international conflicts. CO2 as a natural resource. All in Jesse Zondervan’s Mar 8 – Apr 4 2018

Climate migration needs to be predicted and planned now. Geoengineering can slow down sea level rise but could also lead to international conflicts. CO2 as a natural resource. All in Jesse Zondervan’s Mar 8  – Apr 4 2018

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

Imagine 140 million people across sub-Saharan Africa, south Asia and Latin America migrating in response to climate change effect, by 2050. This is what a recent World Bank report claims, by projecting current internal migration patterns due to effects, like coastal land loss and crop failure, into the future using climate models.

Climate migration will tend to be mostly internal to countries and can foster inequality as well as economic loss. Since it’s inevitable, we will need to plan for it.

We cannot prevent climate migration, but geoengineering will be a very powerful way to combat unnecessary increases in damage from climate change. With this power comes responsibility through. What will happen if one country decides to spray aerosols to decrease temperature, and inadvertently changes things for the worse for another region?

So yes, we need laws on geoengineering to prevent battles over well-meant geoengineering failures. Interestingly, I found a lot of research articles with new geoengineering proposals, so it’s really coming soon, and we need to think about regulation now.

Geoengineering can be costly. Pumping carbon dioxide from the atmosphere may prevent crop failures due to elevated temperatures, but it is still expensive. But what if we could use CO2 as a natural resource? A team of US and Canadian scientists say it will be possible to use captured CO2 for feedstock, biofuels, pharmaceuticals, or renewable fuels.

This month you will find an article under the section ‘career’, which you should have a look at if you’re doing or thinking of doing a PhD and you want to consider working outside academia. You will find a lot of articles under the usual headings too, so go ahead!

Geoengineering

Once we can capture CO2 emissions, here’s what we could do with it at ScienceDaily by Sarah Fecht at State of the Planet

Preventing hurricanes using air bubbles at ScienceDaily

Geoengineering polar glaciers to slow sea-level rise at ScienceDaily

Mekong River dams could disrupt lives, environment at ScienceDaily

Climate Migration

Wave of Climate Migration Looms, but It “Doesn’t Have to Be a Crisis” by Andrea Thompson at Scientific American

Addressing Climate Migration Within Borders Helps Countries Plan, Mitigate Effects by Alex de Sherbinin at State of the Planet

Career
Having an impact as a development economist outside of a research university: Interview with Alix Zwane by David McKenzie at Development Impact

Sustainability

Structuring collaboration between municipalities and academics: testing a model for transdisciplinary sustainability projects at Lund University

To Sustain Peace, UN Should Embrace Complexity and Be UN-Heroic by Peter Coleman at State of the Planet

Climate Change Adaptation

The Rise of Cities in the Battle Against Climate Change by Allison Bridges at State of the Planet

A City’s Challenge of Dealing with Sea Level Rise at AGU’s Eos

The absence of ants: Entomologist confirms first Saharan farming 10,000 years ago at ScienceDaily

Turning cities into sponges: how Chinese ancient wisdom is taking on climate change by Brigid Delaney at The Guardian

Risk of sea-level rise: high stakes for East Asia & Pacific region countries by Susmita Dasgupta at East Asia & Pacific on the Rise

National Flood Insurance Is Underwater Because of Outdated Science by Jen Schwartz at Scientific American

Disaster Risk

Mobile phones and AI vie to update early disaster warning systems by Nick Fildes at The Financial Times

7 years after tsunami, Japanese live uneasily with seawalls by Megumi Lim at Japan Today

Volcanic risk

GeoTalk: How will large Icelandic eruptions affect us and our environment? By Olivia Trani at EGU’s GeoLog

Earthquake risk

The Wicked Problem of Earthquake Hazard in Developing Countries at AGU’s Eos

External Opportunities

Summer 2018 Internship Opportunities at the Earth Institute

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev& Facebook.

Weighing up the pros and cons of artificial coral reefs

Weighing up the pros and cons of artificial coral reefs

The world’s oceans cover 71% of the Earth’s surface and contain 97% of Earth’s water. They play a key role in the climate cycle and, though perhaps not always visibly, are suffering significantly under our changing climate. An place where we can see the alarming effects of rising temperatures and increasingly acidic waters is coral reefs, which experienced the longest, most widespread, and possibly the most damaging coral bleaching event on record between 2014 and 2017. In today’s post, Heather Britton compares natural vs. artificial coral reefs in the context of protecting life below the water (UN sustainability goal 14).

Reefs around the world are dying – approximately half of the world’s coral reefs have disappeared over the past 30 years, and many are showing signs of following in their stead – be it due to increased water temperature, sea level change or an influx of sediment in previously nutrient-poor conditions. Many of the factors contributing to the bleaching and eventual death of these ecosystems stem from the impact of people, such as global warming and the development of resorts in the vicinity of fragile reef environments.

The disappearance of coral reefs would lead to a catastrophic loss of biodiversity – coral reefs are thought to be the most biodiverse ecosystems on the planet, displaying a greater variety of life than even rainforests, and it is clear that we need to act now if these environments are to be saved – for many reefs it is already too late.

One popular response to the loss of natural coral reefs has been to construct artificial reefs, replacing those that have died and providing a habitat for organisms that may otherwise become extinct. These structures take a plethora of forms, from sunken ships to cinder block stacks, but as long as they are made of a hard substrate and are able to offer protection and a place for sheltering organisms to spawn there is potential for a reef to develop in as little as two-three years.

In many ways, this is an elegant solution. Not only do artificial reefs help to combat the loss of biodiversity associated with the decline of their natural counterparts, but they attract divers and other tourists to the sites where they are placed, bringing in tourism and strengthening the economy in the area. This benefit is particularly valuable to lower income countries, some of which boast extensive coral reef ecosystems. In addition, reefs are known to concentrate fish populations and therefore are popular with the fishing industry worldwide – the first recorded artificial reefs were developed by fishermen in Japan in the 18th century, who sunk makeshift shelters to increase their haul. Reefs form from man-made substrates relatively easily, and they are certainly preferable to a lack of reefs altogether – but can artificial reefs really ever match their natural cousins?

Diver installing ocean-chemistry monitoring equipment at Florida Keys. Credit: Ilsa B. Kuffner (U.S. Geological Survey). Distributed via U.S. Geological Survey. 

Artificial reefs are created extensively off the coast of Florida, as much for the economic benefit that the tourism brings (both through fishing and diving) as increasing ocean biodiversity. The region is encountering problems, however, one of which is local people choosing to develop their own personal reefs using suboptimal materials. For example, tyres, when strapped together, attract aquatic organisms as they provide a place to spawn and the shelter of a natural reef, but the toxicity of the rubber can negatively impact the environment in ways that a ship or concrete blocks will not. Ships that are sunk professionally for the purpose of artificial reef formation are extensively prepared before they are placed underwater, whereas amateurs rarely take the time to prepare their seeding structures properly. This has led some countries, such as Australia, to develop laws against the formation of artificial reefs without a permit.

Artificial reefs are also celebrated because they attract divers away from the surviving natural reefs, meaning that each individual reef is less damaged by people. It is also possible, however, that the number of tourists in total might increase in response to the increased number of dive-sites, having the opposite effect and causing dive sites in the region to become more popular.

Arguably, the most important question to be asked when discussing natural vs artificial reef structures is: do artificial reefs have biodiversity equivalent to that of natural reefs? The answer is unclear, but it certainly seems that the biodiversity of each kind of reef is different. Artificial reefs, at first glance, seem to attract more fish to them than natural reefs. This suggests that that artificial reefs may be encouraging fish to reproduce more than the naturally occurring reefs scattered throughout the oceans. However, many of the marine animals attracted to feed and shelter around artificial reefs do not breed there, and simply visit from other regions of the ocean. Artificial reefs therefore may only be acting to concentrate the fish in a single area, making them more susceptible to fishing and generally increasing the effect of fishing pressure on marine populations. This is commonly referred to as the ‘aggregation vs production’ debate. If the fish are more numerous at artificial reefs because they are breeding there, then the reef is likely acting to increase the population of that particular fish species and artificial reefs are helping to sustain the biodiversity of the oceans. If they are simply concentrating fish that typically spend their time swimming between reefs, however, fish numbers are likely to be negatively, not positively affected.

Dead corals turned to rubble, off the coast of the US Virgin Islands. Credit: Curt Storlazzi (U.S. Geological Survey). Distributed via U.S. Geological Survey.

A study on the Caribbean island of Bonaire provides some insight into the differences in diversity between natural and artificial reefs. Equal diversity was found at partnered artificial and natural reefs, but the composition of this diversity was starkly different. Whilst the sergeant major and bluehead wrasse fish were most commonly seen on the artificial reef, the natural was more commonly frequented by bicoloured damselfish and brown chromis. Similar trends were visible within the benthic community of organisms, suggesting that although artificial reefs may preserve the diversity that we see within the oceans today, some organisms appear to populate natural reefs to a far greater extent than their artificial counterparts, and these species may still be lost.

For this reason it is of the utmost importance that every effort is made to protect the natural coral reefs of today, thereby working to achieve UN sustainability goal 14 (Life below the Water). Artificial reefs are helping to preserve the biodiversity of the oceans and save countless organisms from extinction, but it is important to remember that what causes the corals of natural reefs to die will also impact the corals which begin to grow on artificial reefs. In order to prevent the loss of these ecosystems we need get to the root of the problem and combat the things that are harming coral reefs – global warming, human physical destruction of reef environments and the pollution of our oceans.

What would you do in the minute before an Earthquake? Do our planet’s environmental limits hamper socio-economic development? Find out in Jesse Zondervan’s Feb – Mar 7 2018 #GfGDpicks #SciComm

What would you do in the minute before an Earthquake? Do our planet’s environmental limits hamper socio-economic development? Find out in Jesse Zondervan’s Feb  – Mar 7 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

In the late afternoon of 16 February people in Mexico City celebrate Chinese New Year when they hear an earthquake alarm. If you ever wondered what it is like to experience an earthquake, you should watch the videos in Austin Elliot’s The Trembling Earth blog. What do people do in the 78 seconds of earthquake early warning?

Next to stories on risk of landslide-induced floods in Papua New Guinea, the cost of waiting for a volcanic eruption to happen and other disaster risk discussion, this month is full of good articles on sustainability:

Earth has environmental limits, can we all live a good life in it?

Dan O’Neill from the University of Leeds notes that to achieve social thresholds, countries have needed to exceed multiple biophysical boundaries. He asks how we can ever live well within our planet’s natural boundaries and what this means for sustainable development.

Professor Steve Cohen at Columbia University’s Earth Institute sees a trend that may help with this sustainability problem. An increasing number of young people are drawn to sustainability education and the role of the sustainability professional is emerging. Steve argues these sustainability professionals must be scientifically literate and focus on the physical world.

More in this month, entrepreneurs start seeing opportunities in predicting climate change risks, geologists have found rock containing plastic, and a new massive open online course (MOOC) encourages its students to play a disaster risk reduction game.

As always, there’s a lot to read this month. This time I highlighted in bold the articles I think you should read first, so go ahead!

Sustainability

Is it possible for everyone to live a good life within our planet’s limits? By Dan O’Neill at The Conversation

The Emerging Sustainability Professional by Steve Cohen at State of the Planet

What does climate change hold in store for European cities? Creating a guidebook for the future & Envisioning climate-friendly cities at Future Earth

Geopolicy: Combating plastic pollution – research, engagement and the EU Plastic Strategy by Chloe Hill at EGU’s GeoLog blog

How can studying the past, such as life in Maya cities, help the world to solve modern problems? See ‘Creating a guidebook to the future’ Credit: VoY-TeC (distributed via Flickr CC BY-NC 2.0)

Climate Change Adaptation

What Land Will Be Underwater in 20 Years? Figuring It Out Could Be Lucrative by Brad Plumer at The New York Times

Why scientists have modelled climate change right up to the year 2300 by Dmitry Yumashev at The Conversation

Can Soil Help Combat Climate Change? By Renee Cho at State of the Planet

The Challenges of Drought Prediction by Zengchao Hao at Eos

What are the challenges of drought prediction? Credit: PublicDomainPictures/18042 images (distributed via Pixabay [CC0 1.0])

Education/communication

New Massive Open Online Course on Natural Disasters at Eos

Citizen outreach and river education in India by Beth Fisher at Little River Research

The Complex Interface between the Public and Science by Cary Funk at Scientific American

Volcanic risk

Rehearsing for eruptions by Jessica Ball at the AGU’s Magma Cum Laude

The Costs Of Waiting For A Volcano To Erupt by Dr Peter Ward at Forbes

Earthquake risk

78 seconds of Earthquake Early Warning by Austin Elliot at the AGU’s The Trembling Earth

Damage Assessment by Laser Could Focus Postearthquake Response by Laura G Shields at Eos

How do you plan for volcanic hazards? How much does it cost? Credit: Kanenori/260 images (distributed via Pixabay [CC0 1.0]). 

Disaster Risk

An emerging crisis? Valley blocking landslides in the Papua New Guinea highlands by Dave Petley at the AGU’s The Landslide Blog

Creeping danger: Landslide threatens Peruvian village, especially when the earth quakes by Jane Palmer at Earth Magazine

Geophysicists and atmospheric scientists partner to track typhoons’ seismic footprints at Science Daily

UN launches effort to collect data on disaster losses at UNISDR

External Opportunities

Online Course Environmental Justice starts 12 March at Earth System Governance

Call for Papers – 2018 Utrecht Conference on Earth System Governance at Earth System Governance

Columbia Center on Sustainable Investment Seeks Interns for Summer 2018 at State of the Planet

New and Returning Employers at All Ivy Career Fair Indicate Growth in the Sustainability Job Market at State of the Planet

Check back next month for more picks!

Follow Jesse Zondervan on Twitter: @JesseZondervan.
Follow us on Twitter (
@Geo_Dev) & Facebook.