GeoLog

Svalbard

Imaggeo on Mondays: Up close and personal with Svalbard glaciers

Imaggeo on Mondays: Up close and personal with Svalbard glaciers

A University Centre in Svalbard (UNIS) Glaciology student examines the calving front of the Paulabreen glacier [in Spitsbergen, Svalbard], taking advantage of sea ice in the Rindersbukta fjord to safely approach the front. Paulabreen is a surge-type glacier, which means that it periodically switches between long periods of slow, stable flow to short-lived periods of very fast flow during which it advances.

Paulabreen last surged between 2003 and 2006, advancing 1.5km in that period. This rapid advance turned the calving front into a crevassed and jumbled mess. In this photo we see a mix of glacier ice, refrozen water ice and crevasses infilled with basal sediments, resulting in a beautiful and chaotic pattern of contrasting textures, twisted into place by the grinding force of the surge.

Description by Matt Trevers, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Wandering the frozen Svalbard shore

Imaggeo on Mondays: Wandering the frozen Svalbard shore

These ethereal, twisted ice sculptures litter the frozen shoreline of Tempelfjorden, Svalbard, giving the landscape an otherworldly feel and creating a contrast with the towering ice cliff of the glacier and the mountains behind. They are natural flotsam, the scoured remnants of icebergs calved from the Tunabreen glacier, washed up on the shoreline.

These icebergs were calved from the Tunabreen glacier, which flows into Tempelfjorden from its source at the Lomonosovfonna ice cap. Tunabreen is a surge-type glacier, which means that it periodically switches between long periods of slow, stable flow to short-lived periods of very fast flow during which it advances. Tunabreen has historically surged approximately every 35 to 40 years, and its calving front advanced more than 2 kilometres during a surge in 2004.

Tunabreen is one of the glaciers monitored by the Calving Rates and Impact on Sea Level (CRIOS) project, an international initiative that involves several institutions. The glacier tends to slow during the winter months when there is less meltwater available to lubricate the sliding of ice over bedrock. Glaciologists were caught by surprise, therefore, when in late 2016 the glacier was observed to accelerate to speeds in excess of 3 m/day from the more usual 0.4 m/day. This acceleration began at the glacier terminus and spread up to 7km upstream over the following months. Tunabreen appeared to be surging decades earlier than expected!

The causes of this change in the glacier’s behaviour are not certain. However, the onset of this acceleration followed an unusually warm and wet autumn. Sea ice, which usually acts to oppose the flow by applying a resistive pressure against the calving front, also failed to form in Tempelfjorden over the winter. Both of these factors likely contributed. As a result of the flow acceleration, the surface of the glacier has become heavily crevassed, posing a hazard to travellers and glaciologists hoping to cross it!

I was fortunate to be able to visit Tunabreen in March 2017, as part of a glaciology course taught at UNIS, the University Centre in Svalbard. The view of the glacier’s 100ft high calving front framed by the mountains in the background is spectacular, and the trip by snowmobile was a fantastic daytrip. The surge continued throughout 2017 and early 2018, with the calving front advancing by more than a kilometre during that period. Since the summer of 2018, flow velocities have been decreasing, so it appears that the surge may have come to an end. This episode illustrates that there is still much we have to learn about the dynamics of surge-type glaciers, and that they can still take us by surprise!

Matt Trevers, PhD Researcher, Centre for Polar Observation and Modelling, University of Bristol

Further reading

Glaciers On The Move

Tunabreen may be surging decades earlier than expected (The University Centre in Svalbard)

What is going on at Tunabreen? (Penny How)

The recent surge of Tunabreen, Svalbard (Adrian’s glacier gallery) 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Digging out a glacier’s story

Imaggeo on Mondays: Digging out a glacier’s story

This photograph shows landforms on Coraholmen Island in Ekmanfjorden, one of the fjords found in the Norwegian archipelago, Svalbard. These geomorphic features were formed by Sefströmbreen, a tidewater glacier, when it surged in the 1880s.

Although all glaciers flow, some glaciers undergo cyclic changes in their flow. This is called surging, and glaciers that surge are called surging glaciers. During their active phase, surging glaciers speed up and advance. At this time, glaciers collect, transport and deposit large volumes of sediment. This active phase is then followed by a so-called quiescent phase, when glaciers slowdown and retreat. Sediment carried within the ice is then exposed. Often surge-type glaciers produce a characteristic set of landforms, like the red ridges featured here in this photograph.

Only a small proportion of the world’s glaciers surge. Svalbard is home to many of these surging glaciers, and the length of the surge cycle varies by region. A quiescent phase of surging glaciers in Svalbard can last between 10 and 100 years. An active phase is commonly between 1 and 10 years. Surging glaciers are enigmatic; we still do not fully understand all the processes that cause these glaciers to switch between active and quiescent phases.

When Sefströmbreen surged, it advanced over the fjord and overrode Coraholmen Island. The glacier deposited up to 0.2 km3 of sediment on the western side of the island. As a result, the island doubled in size. The red ridges in the foreground of the photograph were formed when sediment under the glacier was squeezed up into crevasses, large cracks in the ice. Once the ice melted, these crevasse-squeezed ridges were exposed. They contrast in colour with grey Kolosseum Mountain in the background.

Glaciers are useful indicators of past climate and they are used for climate reconstructions. However, surging glaciers are not suitable for such reconstructions. This is because glacier surging is not directly related to climate. When a surging glacier advances during its active phase, it does not mean that the climate is colder. This also holds true for the past. If a surging glacier was bigger at some point in the past, it is not because the climate at the time was colder. If we didn’t know that the glacier surged, we would make a wrong inference about climate. Therefore it is important to know which glaciers are surging-type glaciers.

To document surging behaviour of glaciers, we can use historical sources, glaciological observations and satellite images. If no such records exist or if we are interested in time period that precedes satellite observations, we rely on landforms to tell us the story. We can study these landforms, their appearance, shape, structure, and what they’re made of to learn about past behaviour of glaciers, their dynamics, and processes that go on underneath a glacier where it meets its bed.

The photograph was taken during a field cruise as part of the University Centre in Svalbard’s Arctic Glaciers and Landscapes course.

By Monika Mendelova, University of Edinburgh (UK)

References

Boulton, G.S. et al. Till and moraine emplacement in a deforming bed surge — an example from a marine environment. QSR 15, 961-987. 1996

Evans, D.J.A., & Rea, B.R. Geomorphology and sedimentology of surging glaciers: a land-systems approach. Ann. Glaciol. 27, 75 – 82. 1999

Dowdeswell, J.A. et al. Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic. Geophys. Res. Lett. 22, 2909-2912. 1995

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Arctic cottongrass in Svalbard

Imaggeo on Mondays: Arctic cottongrass in Svalbard

In the High Arctic, where vegetation is limited in height, cottongrass stands out as some of the tallest plant species around.

This photo shows a wispy white patch of Arctic cottongrass growing amongst other tundra vegetation in the Advent river floodplain of Adventdalen, a valley on the Norwegian archipelago island Svalbard.

Svalbard is of particular scientific interest as it is a relatively warm region for its high latitude. This is due to the North Atlantic Ocean, which transports heat from lower latitudes to Svalbard’s shores.

The photo was taken in September 2014, towards the end of the region’s growing season. In the background, you can see that the season’s first snow had already blanketed the valley’s neighboring mountain tops.

Cottongrass generally loves wet conditions and scientists sometimes even use this plant genus (Eriophorum) as an indicator of the ground’s fluctuating water level, especially in areas that begin to develop peat, an accumulation of more of less decomposed plant material in wet environments. The waters feeding this region’s wetland come from melted snow and ice travelling down the adjacent mountains and floodwater from the Advent river, which is primarily meltwater fed.

Arctic cottongrass also can exchange gases with their underground environment through their roots and even have been shown to alter the local carbon budget of regions where they grow. It is therefore a very important species to account for when studying permafrost carbon dynamics.

Gunnar Mallon, currently a teaching fellow at the University of Sheffield (UK), took this photo while on a fieldwork expedition together with Andy Hodson, a glaciology professor at the University Centre in Svalbard, for the LowPerm project.

The LowPerm project aimed to understand how nutrients are transported within permafrost landscapes in Norway and Russia and how that may affect the production of greenhouse gases, such as carbon dioxide (CO2) and methane (CH4). The study brought together scientists from the UK, Norway, Denmark and Russia and results from the extensive field and laboratory work are currently being analysed and made ready for publication.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.