GeoLog

hydrology

Imaggeo on Mondays: Our QUEST for innovative tools to understand changing environments and climates

Imaggeo on Mondays: Our QUEST for innovative tools to understand changing environments and climates

The photo shown here shows typical sampling work underground. You can see Ola Kwiecien and Cinthya Nava Fernandez, researchers at Ruhr University Bochum in Germany, collecting dripwater in New Zealand’s Waipuna Cave as part of a four-year EU-funded monitoring programme. Our research aims at developing innovative geochemical indicators that we can use to quantify changes in the hydrological system or biosphere above the cave that result from variations in weather patterns and climate.

Caves are fantastic natural archives and laboratories. One can imagine caves like libraries of natural history: they host carbonate formations (such as stalagmites, stalactites, flowstones etc., collectively known as speleothems) which, like books, can be read by geochemists to learn about past climatic and environmental conditions. Importantly, these ‘stone books’ must, on the one hand, be protected from destruction by weathering, and on the other, must be written in a language that we can decipher. The secluded cave environment greatly helps protect speleothems from erosion and weathering, while monitoring the cave environment and hydrology allows us to learn the alphabet which nature uses to write natural history into the speleothems. Only then can we reconstruct, and ideally quantify, past environmental conditions.

Of special importance for our work in New Zealand is the El Nino-Southern Oscillation and the southern Westerlies. These two atmospheric subsystems strongly influence weather and climate in New Zealand. Southward or northward shifts of the Westerlies influence New Zealand crop yields and tourism, as well as the fishing economy, among others. El Nino and La Nina have equally strong impacts on weather patterns in New Zealand (and, in fact globally).

Despite many years of research, the mechanisms that cause changes to the ENSO and the Westerlies, and their interaction, still remain poorly understood. This lack of knowledge limits scientists’ efforts to estimate the magnitude and direction of changes that might result from ongoing global warming.

Our team of German, British and New Zealand geochemists, mathematicians, palaeoclimatologists and modellers set out to develop innovative tools and methods that would allow researchers to quantify, for example, changes in rainfall or seasonality, with the ultimate goal that these should be applicable globally. The manual sampling depicted in the photo might soon be replaced by an automatic sampler, which would greatly reduce the costs for regular fieldwork. Especially in remote settings such robots would be of great benefit for our research.

Our team also developed new proxies, such as a lignin-based (biomarker) proxy that allows us to reconstruct changes in vegetation above the cave. We also explored how transition metals behave in the hydrological system of caves, and the factors that control how these metals are transported and incorporated into speleothems. These research activities will hopefully give us powerful and very sensitive tools to quantify changes of environmental parameters, including rainfall, temperature, soil and vegetation and the underlying forcings, like ENSO. Until we have our tool kit properly calibrated, we continue our visits to Waipuna and other caves in New Zealand and Germany.

Our QUEST project has received funding from the European Union’s Horizon 2020 Research and Innovation programme and the Royal Society of New Zealand. Find more at http://quest.pik-potsdam.de/

By Sebastian Breitenbach, Ruhr University Bochum (Germany), and Adam Hartland, University of Waikato (New Zealand)

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: In-tents Icelandic sunset

Imaggeo on Mondays: In-tents Icelandic sunset

This photograph was taken at the campsite near lake Mỳvatn during a field trip to Iceland. Every year a group of students from Wageningen University travels from the Netherlands to Iceland for a weeklong excursion as part of a course on catchment hydrology. The aim of the trip is to provide students with real life examples of the processes they learned during their lectures.

After a rainy morning that day, tents and equipment were packed away as quickly as possible in order to escape the wetness. The drive took the group from the campsite in Höfn, at the foot of the Vatnajökull glacier in southeastern Iceland, along the coastal highway up north towards Myvatn. Iceland is famous for its raw and beautiful nature, with waterfalls seemingly around every corner and the imposing presence of the glaciers and volcanos in the distance.

Upon our arrival at the campsite in the evening, people begrudgingly noticed that the tents were still wet from the morning rain. The campsite was situated at the bottom of a formidable hill, which provided stunning views over the lake and landscape. Not wanting to sleep in a damp tent, a few students picked up their tents, dismantled them, went up the hill and let the evening breeze do the rest, all amid the backdrop of a stunning sunset. The desire for dry covers even outweighed the very real danger of being eaten alive by masses of midges, a known pest and hazard in these parts.

When camping there is always things that can go wrong. But for places like Iceland it is the only way to truly appreciate and experience the country’s stunning beauty and wilderness. Gazing up at the northern lights from your sleeping bag is a once-in-a-lifetime experience. While waking up in the middle of the night and having to put on boots and jacket to run to the bathroom is vexing, you might be rewarded with views of the top of the glacier that has been shrouded in clouds all day, making it seem like Zeus himself is taking a peek down from Mount Olympus to see what is going on. Iceland has to be experienced, not from a cosy hotel bed, but from a tent put up in the evening and taken down the next day. As Albert Einstein once said: “Look deep into nature, and then you will understand everything better”. Even if that means hiking up a hill and holding your tent up into the wind to dry.

By Maria Warter, PhD student at Cardiff University

 

Imaggeo On Mondays: Reservoir in the Italian Alps

Imaggeo On Mondays: Reservoir in the Italian Alps

Mountain natural streams and reservoirs have a relevant hydrological and ecological importance since they represent reliable sources of freshwater supply to lowland regions and high-quality habitats for fish and cold-water communities. Moreover, streams in mountain environments are of significant importance for users in several socio-economic sectors, such as agriculture, tourism and hydropower.

Given the vulnerability of mountain streams and catchments to the impact of climate changes and the increasing concern about water supply in mountain regions, there is the urgent need for scientists to face integrated, multidisciplinary catchment-scale studies addressing implications of climate change on water resources management and flow regimes.

Description by Daniele Penna, as it first appeared on imaggeo.egu.eu

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

GeoTalk: Fishing meets science with waders and smartphones

GeoTalk: Fishing meets science with waders and smartphones

Dutch and American researchers have developed waders equipped with temperature sensors that enable fly-fishers to find the best fishing locations while collecting data to help scientists study streams. The research is published today (29 February) in Geoscientific Instrumentation Methods and Data Systems (GI), an open access journal of the European Geosciences Union. In this GeoTalk interview we talk to Rolf Hut, a hydrologist at the Delft University of Technology, and lead author of the paper, as well as with Tim van Emmerik, co-author of the paper and also a hydrologist at Delft University of Technology, to learn more about this unique invention and its application for both hydrologists and fly fishers!

What was the motivation behind this study? How did the idea to use temperature sensing waders for environmental sciences come about?

Rolf: The idea originated during a discussion between Scott Tyler and I at the 2014 AGU Fall Meeting . We were discussing the difficulty in calibrating DTS (Distributed Temperature Sensing, see Selker et al., 2006) in streambeds and suddenly the thought popped in our heads that we are wearing waders when installing DTS cables, why not equip the waders with temperature sensors? When we started to further think this idea through (beer may have been involved), we realised that fly-fishers walking in streams with temperature sensing waders would make a great source of data for scientists studying hyporheic exchange (the study of groundwater-streamwater interaction).

Furthermore, fly fishers themselves could benefit from knowing local stream temperature to find optimal fishing locations. Therefore, we set out to, as a first test, prove that temperature sensing waders could potentially provide this information. The result of that test is presented in our current paper.

What data do you hope to collect with your waders and what applications, both for the scientific community and the wider public, would the data have?

Rolf Hut testing the temperature-sensing waders in the field. Credit: Tim van Emmerik

Rolf Hut testing the temperature-sensing waders in the field. Credit: Tim van Emmerik

Rolf: As scientists, we hope these data help us better understand where groundwater enters streams and where stream water drains away to the groundwater. Hyporheic exchange (groundwater-streamwater interaction) is a complex field of study, with very local places where groundwater enters small streams. Understanding this is vital in understanding stream-water ecology: which species live where in the stream. Ultimately, good understanding of stream dynamics helps us advise policies that better balance multiple use of stream water: as a natural habitat for plants and animals, and as a human drinking resource and place for recreation.

However, measurements of streamflow dynamics, including stream temperature, are usually labour intensive and at the same time, stream dynamics vary highly between different streams. For better understanding, more measurements are needed, but scientists are (rightly so) budget constrained in this. Therefore, we believe our temperature sensing waders, when applied at large scale, can be very beneficial to our understanding of stream dynamics.

Tim: In just the USA alone, an estimated 27 million recreational anglers regularly fish in freshwater streams and lakes. Imagine if they were all equipped with a temperature sensing wader! This would mean a constant supply of new, accurate data, which can be used to estimate water quality and quantity, fish ‘hotspots’, and overall state of the ecosystem.

How did you show your idea of using waders and smartphones to measure water temperature was feasibility?

Rolf: In this paper we only wanted to test whether a sensor in the bottom of a wader would be able to detect (large) differences in stream temperature so we could pinpoint locations of groundwater-streamwater interaction.

We tested this in two ways. First, we tested it in the field by walking in a stream where we knew a localised influx of cold groundwater was present. I was wearing the waders and also used a reference thermometer to measure water temperature. Secondly, we tested how long it takes for the waders to change temperature when exposed to a drop, or rise, in temperature. We tested this in the Water Lab of Delft University of Technology by preheating the waders and then exposing it to the colder water of the flume in our lab. We differed the flow velocity in the flume, and also tested what the influence of having a (warm blooded) human leg in the wader was to the temperature it sensed.

Could you clarify what advances you’ve made since you first presented this research at the EGU General Assembly last April?

Rolf: After the initial idea, I submitted an abstract to the General Assembly. In the abstract for the GA I merely promised to “show a prototype”. Because of other academic deadlines, and my own chaotic mind, this meant that the prototype demonstrated at the General Assembly was made the Sunday before the GA started, in our AirBnB apartment in Vienna. My poster had an explanation of “the idea” in it, and my phone showed the real-time temperature of the wader. I had to calibrate it on the spot, so I needed both a hot and a cold reference temperature. We used the ice intended for the beers during the poster session as cold calibration. If people are still wondering why the beer was not as cold as it should have been that day: now they know. Hooray for last minute science :-s. However, walking around in waders during the poster session drew the attention of journalist who covered our work. Which was, honestly, at that point at a very early stage. For the work presented in this paper, we took the time to be more precise and did a proper calibration in our lab.

Tim: The presentation at EGU got a lot of enthusiastic reactions, from scientists, professionals, journalists, and many others. We used the momentum that was gained at the GA to very effectively do our lab measurements, fieldwork campaign at a beautiful Dutch windmill-filled site, and wrap up the study in a concise paper.

Location in the Dutch country side where researchers tested their prototype waders. Credit: Tim van Emmerik

Location in the Dutch country side where researchers tested their prototype waders. Credit: Tim van Emmerik

Do you have any plans to actively engage the fishing community and get members of the public to use the waders?

Rolf: Now that we have demonstrated first feasibility we want to discus with producers of waders to find the best way to easily incorporate sensors in many waders. Once that is sorted out, we want to reach out to communities with interest, such as (fly-)fishing groups, local conservation groups and schools. After the press coverage that the GA sparked, several of these groups already reached out to us. I have kept that at arm’s length for now, because we wanted to be sure that the ideal would hold up to a first test, which we now have demonstrated.

In your view, what are the most important results and implications of this study?

Rolf: it works!

Basically, we had a wild idea at the AGU Fall Meeting and demonstrated a prototype at the EGU General Assembly. We now have demonstrated that this prototype is capable of measuring the type of temperature changes we are interested in. With that hurdle taken, the road to citizen science campaigns is now open.

Tim: This work really is an example of how relatively simple measurement devices can be fused with existing equipment to actively involve communities in gathering scientific data. It’s becoming a trend to find ways to incorporate ‘alternative’ communities in science. Whether it’s school kids or fishermen, studies like ours demonstrate that everyone can be a scientist.

For more information about the research published in Geoscientific Instrumentation Methods and Data Systems (GI) you can read the associated press release issued today to accompany the publication. You’ll also find the open-access paper by following this link.