GeoLog

EGU General Assembly 2018

GeoTalk: Severe soil erosion events and how to predict them

GeoTalk: Severe soil erosion events and how to predict them

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Matthias Vanmaercke, an associate professor at the University of Liège in Belgium who studies soil erosion and land degradation across Europe and Africa. At the EGU General Assembly he received the 2018 Soil System Sciences Division Outstanding Early Career Scientists Award.

Thanks for talking to us today! Could you introduce yourself and tell us about your career path so far?

Hi! So I am Matthias Vanmaercke. I’m from Belgium. I’m studied physical geography at the University of Leuven in Belgium, where I also completed my PhD, which focused on the spatial patterns of soil erosion and sediment yield in Europe. After my PhD, I continued working on these topics but with a stronger emphasis on Africa. Since November 2016, I became an associate professor at the University of Liege, Department of Geography where I continue this line of research and teach several courses in geography.

At the 2018 General Assembly, you received a Division Outstanding Early Career Scientists Award for your contributions towards understanding soil erosion and catchment sediment export (or the amount of eroded soil material that gets effectively transported by a river system).

Could you give us a quick explanation of these processes and how they impact our environment and communities?

We have known for a long time that soil erosion and catchment sediment export pose important challenges to societies. In general, our soils provide many important ecosystem services, including food production via agriculture. However, in many cases, soil erosion threatens the long term sustainabilty of these services.

Several erosion processes, such as gully erosion, often have more direct impacts as well. These include damage to infrastructure and increased problems with flooding. Gullies can also greatly contribute to the sediment loads of rivers by directly providing sediments and also by increasing the connectivity between eroding hill slopes and the river network. These high sediment loads are in fact the off-site impacts of soil erosion and often cause problems as well, including deteriorated water quality and the sedimentation of reservoirs (contributing to lower freshwater availability in many regions).

Matthias Vanmaercke, recipient of the 2018 Soil System Sciences Division Outstanding Early Career Scientists Award. Credti: Matthias Vanmaercke.

What recent advances have we made in predicting these kinds of processes?

Given that we live in an increasingly globalised and rapidly changing world, there is a great need for models and tools that can predict soil erosion and sediment export as our land use and climate changes.

However, currently our ability to predict these processes, foresee their impacts and develop catchment management and land use strategies remains limited. This is particularly so at regional and continental scales and especially in Africa. For some time, we have been able to simulate processes like sheet and rill erosion fairly well. However, other processes like gully erosion, landsliding and riverbank erosion, remain much more difficult to simulate.

Nonetheless, the situation is clearly improving. For example, with respect to gully erosion, we already know the key factors and mechanisms that drive this process. The rise of new datasets and techniques helps to translate these insights into models that will likely be able to simulate these processes reasonably well. I expect that this will become feasible during the coming years.

 

What is the benefit of being able to predict these processes? What can communities do with this information?

These kinds of predictions are relevant in many ways. Overall, soil erosion is strongly driven by our land use. However, some areas are much more sensitive than others (e.g. steep slopes, very erodible soil types). Moreover, many of these different erosion processes can interact with each other. For example, in some cases gully formation can entrain landslides and vice versa.

Models that are capable of predicting these different erosion processes and interactions can strongly help us in avoiding erosion, as they provide information that is useful for planning our land use better. For instance, these models can help determine which areas are best reforested or where soil and water conservation measures are needed.

They also help with avoiding and mitigating the impacts of erosion. Many of these processes are important natural hazards (e.g. landsliding) or are strongly linked to them (e.g. floods). Models that can better predict these hazards contribute to the preparedness and resilience of societies. This is especially relevant in the light of climate change.

However, there are also impacts on the long-term. For example, many reservoirs that were constructed for irrigation, hydropower production or other purposes fill up quickly because eroded sediments that are transported by the river become deposited behind the dam. Sediment export models are essential for predicting at what rate these reservoirs may lose capacity and for designing them in the most appropriate ways.

At the Assembly you also gave a presentation on the Prevention and Mitigation of Urban Gullies Project (PREMITURG-project). Could you tell us a bit more about this initiative and its importance?

Urban mega-gullies are a growing concern in many tropical cities of the Global South. These urban gullies are typically several metres wide and deep and can reach lengths of more than one kilometre. They typically arise from a combination of intense rainfall, erosion-prone conditions, inappropriate city infrastructure and lack of urban planning and are often formed in a matter of hours due to the concentration of rainfall runoff.

Urban gully in Mbuji-Maji, Democratic Republic of Congo, September 2008. Credit: Matthias Vanmaercke

Given their nature and location in densely populated areas, they often claim casualties, cause large damage to houses and infrastructure, and impede the development of many (peri-)urban areas.  These problems directly affect the livelihood of likely millions of people in several countries, such as the Democratic Republic of Congo, Nigeria, and Angola. Due to the rapid growth of many cities in these countries and, potentially, more intensive rainfall, this problem is likely to aggravate in the following decades.

With the ARES-PRD project PREMITURG, we aim to contribute to the prevention and mitigation of urban gullies by better studying this problem. In close collaboration with the University of Kinshasa in the Democratic Republic of Congo (DRC) and several other partners and institutes, we will study this underestimated geomorphic hazard across several cities in DRC. With this, we hope to provide tools that can predict which areas are the most susceptible to urban gullying so that this can be taken into account in urban planning efforts. Likewise, we hope to come up with useful recommendations on which techniques to use in order to prevent or stabilise these gullies. Finally, we also aim to better understand the societal and governance context of urban gullies, as this is crucial for their effective prevention and mitigation.

Interview by Olivia Trani, EGU Communications Officer

How to convene a session at the General Assembly… in flow charts!

How to convene a session at the General Assembly… in flow charts!

Convening a session at a conference can seem daunting, especially if you are an early career scientist (ECS) and a first-time convener. At the 2018 General Assembly, Stephanie Zihms, the Union-level ECS representative, discussed the basics of proposing, promoting and handling a session in the short course ‘How to convene a session at EGU’s General Assembly.’

In today’s post she has created some simple flow charts to ensure your convening experience is a success. With the call for sessions for the 2019 EGU General Assembly open until 6 September 2018, now’s the perfect time to put this advice into practice!

Did you know that you can help shape the General Assembly by proposing a session?

Follow the flow charts to find out more:

After the session submission deadline, the Programme Committee will look for duplicate sessions and encourage sessions to merge before the call for abstract opens. Once sessions are open for abstract submission, it is then up to you and your convener team to ensure your session is advertised. Try publicising your session as widely as possible. Why not spread the word through social media, mailing lists or even a blog post?

Remember, scientists who would like to be considered for the Roland Schlich travel support have to submit their abstracts by 1 December 2018, prior to the general deadline, to allow for abstract assessment.

Also remember that ECS can apply to be considered for the OSPP (Outstanding Student Poster and Presentation) award. Judges are normally allocated by the OSPP coordinator, but as a convener you need to check each entry has been awarded judges.


Once the general deadline closes, your responsibilities as convener or co-convener depend on the type of session and the number of abstracts. EGU’s conference organisers, Copernicus Meetings, will keep you updated via email and more information about your responsibilities can be found here.

Note that the EGU considers all General Assembly contributions equally important, independent of presentation format. With this in mind, if your session is given oral blocks, make sure your oral slots include presentations from early career scientists as well as established scientists. It’s also a good idea to ensure your diversity selection goes beyond career stage and includes gender and nationality.

As the convener (or co-convener) you need to ensure all abstracts submitted for the Roland Schlich travel support are evaluated and the feedback is provided through the online tool. This should be done as a team.

The minimum number of submitted abstracts required for a session varies each year. This often depends on the type of session requested (oral, poster, PICO) and overall amount of abstracts submitted.

Not all conveners attract the required number of abstracts for their session of choice, but don’t worry. If this happens to you, there are other options available, like converting to different session type or teaming up another session. The EGU Programme Committee works hard to make sure all abstracts are presented at the General Assembly in sessions that are as suitable to them as possible.

Remember, the call for sessions for the EGU General Assembly 2019 closes on 6 September 2018 and the call for Union Symposia and Great Debates proposals ends by 15 August 2018.

By Stephanie Zihms, the Union-level ECS Representative

The EGU’s 2019 General Assembly, takes place in Vienna from 7 to 12 April, 2019. For more news about the upcoming General Assembly, you can also follow the official hashtag, #EGU19, on our social media channels.

Give us the foundation to build our transferrable skills!

Give us the foundation to build our transferrable skills!

The EGU Early Career Scientists’ (ECS) Great Debates offer early career scientists at the EGU General Assembly the chance to network and voice their opinions on important topics in the format of round-table discussions. At the end of the debate, each table delivers a statement that summarises the discussion and recommendations. By publishing the results, we hope to highlight some of the needs of the EGU ECS community and how these matters should be addressed.

At this year’s ECS Great Debate, the topic was transferrable skills in science. The main question was “should early career scientists use time developing transferrable skills?” You may say this is a simple question to answer. Indeed, all the resulting statements indicated that the EGU ECS answer is YES. However, the simple statements hide a much more complex situation; a situation that varies considerably for each individual researcher. Different countries have different standards, different universities set different curricula, and different supervisors have different priorities. Some early career scientists are lucky to have many opportunities to develop transferrable skills, whereas others strive to gain these skills.

Groups defined transferrable skills as ones that could be used in other scientific disciplines and not least, in industry. Indeed, many scientific skills are transferrable. For example, data analysis and statistics were noted as valuable tools across various scientific fields and industry careers. Some groups gave extensive lists of transferrable expertise, and most were not strictly science-based. These included writing, presenting, social media, teaching, team working, project management, networking and critical thinking, to name a few. However, developing these skills do not traditionally fall into the curricula of the geosciences.

Early career scientists having round-table discussions on the importance of developing transferrable skills. (Credit: Olivia Trani)

It was evident that ECS in the EGU consider transferrable skills as extremely important to their careers and their science. They furthermore suggest that researchers should be given time and appropriate credit to develop these skills.

At the same time, many of the ECS debate participants believe in striking a balance between establishing these skills and the scientific skills that their PhDs and publications depend on.

Below you will find a list of the summary statements from the ECS that were present at the Great Debate. These reports, based on the discussions from more than 100 early career scientists, show solid support for transferrable skill training. These results are a clear indication that EGU must continue to work towards offering short courses at the General Assembly on a variety of transferrable skills. Additionally, these statements can help ECS persuade their universities to invest in opportunities to develop these skills if they do not already do so. It is clear that the EGU early career scientist community believes these skills not only help ECS develop their careers, but that they also benefit science and society!

Here are the table’s conclusions:

“Instead of currently developing random skills ourselves, on an ad-hoc basis, we need an environment to support more organized, collaborative, efficient, and recognized skill sets”

“We need transferrable skills to communicate knowledge and help society, therefore learn them, when you need them or want them, others will thank you”

“We should focus on developing these [transferrable] skills but we need to manage our time in order to go deeper into [our] own science”

“Yes, because whether you decide to stay in academia or in industry, these skills will help you be better in your field, help you work on interdisciplinary topics and communicate your work, thus increasing your success. The pros outweigh the cons!”

“Yes, to be a good scientist, researcher, or general human being, it takes more than one skill or field. It takes being open and brave to pursue new experiences to change both yourself and those around you.”

“Scientific careers are not just about getting specific knowledge in your field specialty but being able to adapt yourself to different disciplines.”

“Yes, because you get more job opportunities, it gives you flexibility, it’s fun, it makes you happy, it helps define you and strengthens your personality.”

“Yes, it is important for improving our possibilities after a PhD. We should take these opportunities as early career scientists [and] have more chances to learn these skills.”

“All scientists should be required to take time to develop useful skills for professional and personal development. These developments should not be exclusive to certain groups, should be obligatory with freedom to choose topics, should be offered to supervisors and managers, should include more courses at conferences and there should be more money for travel funding.”

“We need to find a good balance during PhD between doing science and attending courses about transferrable skills.”

“Yes, but plan which relevant transferrable skills you need to develop in the short term in relation to your project, and then update your long-term plan.”

“Transferrable skills will always be useful in your current and future situation. They should be learnt at university. It should be acceptable to spend time learning these skills in courses in tandem with your research.”

By Mathew Stiller-Reeve, co-founder of ClimateSnack and researcher at Bjerknes Centre for Climate Research, Norway

Editor’s note: This is a guest blog post that expresses the opinion of its author and those who participated at the Great Debate during the General Assembly, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.

Giving back to the city: First EGU Public Lecture at the General Assembly 2018 in Vienna

Giving back to the city: First EGU Public Lecture at the General Assembly 2018 in Vienna

The inaugural EGU Public Lecture, titled ‘After Paris: Are we getting the climate crisis under control?’, took place last April at the 2018 General Assembly in the Natural History Museum of Vienna.

In this first public lecture, Stefan Rahmstorf, a climate scientist at the Potsdam Institute for Climate Impact Research in Germany, took the audience on a fascinating journey through the climate system, discussed its impact around the world, and addressed whether the Paris Agreement will mitigate the risks of Earth’s changing climate. Claudia Volosciuk from the World Meteorological Organization reports on the lecture.

Our pale blue dot

Rahmstorf started by taking a look at the small and fragile planet Earth from space, explaining the ways in which Earth receives and radiates energy, including an animation showing the history of greenhouse gas emissions.

He then went into more detail, showing for example the sources and sinks of carbon dioxide and how its increase in the atmosphere is human-caused. The lecture covered multiple geoscientific disciplines and highlighted their connections to each other: from coral reefs to the cryosphere, the oceans to the atmosphere, and hurricanes to deserts.

Studying Earth’s climate

Stefan Rahmstorf explaining the ways in which Earth receives and radiates energy, and the impacts of the additional carbon dioxide that is emitted to the atmosphere. Credit: Hischam Momen / Natural History Museum of Vienna

The audience also gained insight into the various methods that geoscientists use to study different aspects and time scales of the Earth system.

For example, scientists estimate potential future climate outcomes, by employing climate models to analyse the Earth system’s response to different greenhouse gases emission rates, also known as climate scenarios.

To reconstruct Earth’s past climate, researchers have used natural archives (like ice cores or tree rings), and written records. These observations and reconstructions reveal that the hottest summer in Europe since 1500 took place in 2010, followed by 2003, 2002, 2006 and 2007. “I believe that you don’t need to ask a statistician if you want to know whether this is just chance, it’s clear that this is a systematic effect,”* emphasised Rahmstorf.

The Paris Agreement

Referring to the presentation’s title, Rahmstorf highlighted the great success of ratifying the Paris climate accord to limit global temperature rise to well below two degrees above pre-industrial levels, but he  argued that it came 20 years too late. If the agreement had been reached earlier, there would have been more time for countries to curb carbon emission rates and transition to a carbon-free economy, explained Rahmstorf.

He also cautioned that the agreement isn’t a perfect solution as it still implies a substantial warming. For instance, if we met the Paris agreement’s global temperature rise goal, Rahmstorf noted that the average temperature over land would be higher than the global average, as the oceans do not warm as strongly as land masses. Reaching the Paris agreement goals would still create conditions beyond what Earth has experienced for hundreds of thousands of years.

Rahmstorf suggested mechanisms that policy makers could adopt to increase the speed of emission reduction, which is not yet sufficient to reach the Paris agreement goals. These include establishing a minimum price to emit carbon dioxide and ending subsidies for fossil fuels, which are currently still higher than renewable energy subsidies.

He also warned that the longer we wait to decarbonise our economy, the faster we will have to reduce our emission levels in the future. “The famous climate scenarios are called scenarios and not forecasts,” Rahmstorf explained, “Humankind has the choice whether it wants to emit a lot or a little CO2.”*

EGU and Vienna

The General Assembly has been held in Vienna for more than a decade and the EGU has a very good relationship with the city, according to EGU President Jonathan Bamber. “We thought it is about time that we try an experiment and give something back to the city,” said Bamber, “to share with you our enthusiasm and excitement about the science we do.”

Stefan Rahmstorf (left), Jonathan Bamber (center), and Christian Koeberl (right) at the 2018 EGU Public Lecture. Credit: Hischam Momen / Natural History Museum of Vienna

The director general of the Natural History Museum of Vienna, Christian Koeberl, highly appreciated the Union’s decision to conduct the public lecture at the museum, as the institution has a variety of geoscientific activities, including preserving collections and carrying out research projects.

“Today’s topic is one that interests and affects us all, namely climate. Climate is obviously something that is strongly connected with our understanding of the Earth, but also with our interaction as humans with the Earth,”* Koeberl remarked. The event was at full capacity, attended by an audience spanning all age groups, suggesting that Koeberl’s sentiment was widely shared.

By Claudia Volosciuk, World Meteorological Organization

*Quotation is a translation from the German original