GeoLog

caves

Imaggeo on Mondays: Exploring the underground cryosphere

Imaggeo on Mondays: Exploring the underground cryosphere

The winter season is a good time to take advantage of cold weather activities, whether that’s hitting the ski slopes or warming up by a fire, but for Renato R. Colucci, it’s also one of the best time’s to study the Earth’s underground cryosphere.

Colucci, who took this featured photograph, is a researcher at Italian Institute for Marine Sciences (ISMAR) of the National Research Council (CNR) and is a scientific lead partner for the Cave’s Cryosphere and Climate project, C3 for short. The C3 project aims to monitor, study, date, and model alpine ice cave environments.

This photo was taken by Colucci while he and the C3 project team were surveying a large ice deposit in the Vasto cave, situated within the Southeastern Alps of Italy. Speleologists of the E. Boegan Cave Commission began documenting the caves in this region in the 1960s, making it a great site for studying underground cryosphere today. For the past few years the C3 team has been monitoring the microclimates of these caves as well as analysing how the ice masses within are melting and accumulating ice.

There are many different kinds of ice deposits in caves, but the main difference is how these types accumulate their frozen mass. For some cave ice deposits, like the one featured in this photo, the snowfall that reaches the cave interior amasses over time into solid layers of ice, as is typical for many glaciers. However, other deposits take form when water from melting snow or rain percolates through rock’s voids and fractures, then freezes and accumulates into permanent ice bodies in caves.

These high-altitude underground sources of ice are a lesser-known faction of the cryosphere since they are not very common or reachable to scientists, but still an important one. Often the permanent ice deposits in caves contain pivotal information on how Earth’s climate has evolved over time during the Holocene.

However, if the Earth’s global temperatures keep increasing, this data might not be available in the future. While ice masses in caves are more resilient to climate change compared to their aboveground counterparts, many of these deposits, and the vital data they store, are melting away at an accelerating rate. “Global warming is rapidly destroying such important archives,” said Colucci.

Through this project, the researchers involved hope to better understand the palaeoclimate information stored in these deposits and how the ice will respond to future climate change.

By Olivia Trani, EGU Communications Officer

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: A volcanic point of view

Imaggeo on Mondays: A volcanic point of view

It’s not every day that you can peer into a volcano, much less gaze out at the sky from the inside of one. The Algar do Carvão, or “the Cavern of Coal,” is one of the few places on Earth where you can explore the underground reaches of a volcanic site.

The volcanic pit is found on the island of Terceira, part of the Azores archipelago. This collection of islands is an autonomous region of Portugal, located in the Atlantic Ocean about 1800 kilometres west from the Portuguese mainland. The archipelago is an especially volcanic hotspot, situated on the border of three major tectonic plates: the North American, Eurasian and African Plates.

The Algar do Carvão is essentially an ancient lava tube, made up of a volcanic chimney, about 80-90 metres deep, which then opens up into secondary magma chambers. The chimney formed first roughly 3,200 years ago, in the wake of a volcanic eruption. Then a second eruption, occurring in the same spot 1,200 years later, created many of the magma chambers seen today.

A profile of the Algar do Carvão, based on a similar cutaway produced by “Os Montanheiros,” (Credit: Ruben JC Furtado / Wikimedia Commons)

Despite what the cavern’s title suggests, the volcanic site is not a source of coal, but rather named for the walls’ dark black, ‘sooty’ colour. The volcanic pit is actually better known by geologists and cave enthusiasts for its source of silica-rich stalagmites and stalactites, a feature not commonly found in this region. Scientists have hypothesized that the structures’ silicate composition could have come in part from the volcano’s past hydrothermal activity or its population of diatoms, microorganisms which contain silica in their cell walls.

As you can see from the lush flora featured in today’s photo, the Algar do Carvão is teeming with life. Vegetation blankets the mouth of the cone structure and many animal populations thrive in the cavern environment. The volcanic pit is also home to several species found only on the Azores islands, like the troglobian spider Turinyphia cavernicola and the Terceira Island scarab Trechus terceiranus.

References

Daza, D. et al.: Isotopic composition (δ¹⁸ O y δD) of silica speleothems of the Algar do Carvão and Branca Opala volcanic caves (Terceira Island, Azores, Portugal), Estudios Geológicos, 70, 2, 2014.

Borges, P. A. V., Carlos Crespo, L., Cardoso, P.: Species conservation profile of the cave spider Turinyphia cavernicola (Araneae, Linyphiidae) from Terceira Island, Azores, Portugal, Biodiversity Data Journal 4: e10274, 2016.

Nunes, J.C., J.P. Constância, M.P. Costa, P. Barcelos, P.A.V. Borges & F. Pereira: Route of Azores Islands Volcanic Caves. Associação Os Montanheiros & GESPEA (Ed.). 16, 2011.

Algar do Carvão, Associação Os Montanheiros

Natural Monument of Algar do Carvão, 2011 Regional Secretariat for Agriculture and Environment, Governo dos Açores

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Drawing in pencil

Imaggeo on Mondays: Drawing in pencil

The picture was taken in Salina Turda, a fascinating salt mine in western Transylvania, in Durgău – Valea Sarată near Turda city. In the picture, the pockets created by salt dissolution can be observed. Over time, due to the erosive power of air currents, the walls have been reshaped: the corners have been rounded and, at the contact between the roof and the walls, a series of dissolution pockets form. The pockets are created by the effect of the water, found in the moist atmospheric air, which enters the underground cavern. At the base of the walls a consistent layer of recrystallized salt forms due to the slow trickling down of the condensed vapor a long the walls.

Salt deposits from Transylvania belong to an evaporitic horizon overlaid on the entire surface of the basin. Recent geological research enforces the idea that the leading cause for salt precipitation was the isolation from the Pannonian Basin of the Transylvanian Basin; an isolation which took place during the latest Badenian sea-level low stand (some 13.6 to 13.4 million years ago), in a warm and wet climate, not too dissimilar to the modern-day Mediterranean climate.

It is thought that the exploitation of the salts deposits began during the Roman occupation in Dacia, but the first written documents that mention systematic exploitation of the mine by means of underground mining date back only to 1271.

Turda salt mine ceased activity in 1932. During World War II the mine was used as a bomb shelter. In addition, between 1948-1992, the Franz Josef gallery was used as a storeroom for cheese. In 1992, the salt mine opened its doors to tourists.

The mine has a unique microclimate; characterized by temperature ratings in the 11-12 ° C, relative humidity is about 80% and air pressure between 747-752 mmHg. Air ionization at moderate levels and the lack of pathogenic bacteria contribute to the curative effect of respiratory diseases.

 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.