GeoLog

Awards and Medals

Union-wide events at EGU 2019

Union-wide events at EGU 2019

Wondering what to expect at the General Assembly this year? Here are some of the highlights:

Union Symposia (US)

For events which will have general appeal, regardless of your field of research, look no further than the Union Symposia. The very first session celebrates 30 years of the WMO Global Atmosphere Watch Programme (US5). This session will highlight the need for, and illustrate exciting advances in the translation of atmospheric composition research to support services. The event will also articulate the needs for advances in observing systems, models and a better understanding of fundamental processes.

Following this session will be US4: Promoting and supporting equality of opportunities in geosciences. Under-representation of different groups (cultural, national and gender) remains a reality across the world in the geosciences. This Union Symposium will touch on the remaining obstacles that contribute to these imbalances, with the goal of identifying best practices and innovative ideas to overcome obstacles.

Friday’s first session (US2) pays tribute to the 250th anniversary of the birth of Alexander von Humboldt (1769-1859), the intrepid explorer of the Andes and other regions in the world, and the most famous scientist of his time. This symposium will recognise Alexander von Humboldt’s legacy by reviewing the state of the art in studies of the coupled lithosphere – atmosphere – hydrosphere – biosphere system with a focus on the Andean mountain belt

And finally, US3 on Friday afternoon will cover past and future tipping points and large climate transitions in Earth history. The aim of the session is to point out the most recent results concerning how a complex system as the climate of the Earth has undergone many tipping points and what is the specificity of the future climate changes.

Science and Society (SCS)

The EGU is dedicated to the pursuit of excellence in the geosciences for the benefit of humanity worldwide, and the Union’s dialogue with society is one of its priority missions. At the 2019 General Assembly, the EGU is launching an innovative symposium format, Science and Society (SCS), to host scientific forums specifically dedicated to connecting with high-level institutions and engaging the public and policymakers. Here is some information on the two Science and Society sessions taking place this year:

Communication between scientists, institutions, policymakers and the general public is widely recognised as an essential step towards a fair and sustainable society. The Science and Society session Science, Politics and European (dis)integration: A conversation of Geoscientists with Ilaria Capua and Mario Monti (SCS1) will focus on science and politics with a global perspective, and the impact of populism on European integrity and therefore scientific research.

Plastic pollution is recognised as one of the most serious and urgent problems facing our planet. There is a pressing need for global action, backed by sound scientific understanding, to tackle this problem. This additional Science and Society session, Plastics in the Hydrosphere: An urgent problem requiring global action (SCS2), will address the problems posed to our planet by plastic pollution, and examine options for dealing with the threat.

Great Debates (GDB)

This year we’re holding five Great Debates! The topics covered this year are varied, from the safe operating space for the planet and how to ensure it is not passed to Plan-S: Should scientific publishers be forced to go Open Access? The role of scientists in policy-making is another hot topic on the Great Debate agenda, with one debate dedicated to the subject on who is responsible for science in policymaking.

Another Great Debate will focus on Rewards and recognition in science: what value should we place on contributions that cannot be easily measured. At this session a panel of stakeholders will discuss how can we fairly value and credit scientists with harder-to-measure contributions, such as engaging directly with the public and policymakers and practicing open scholarship.

Continuing with the success of last year’s Early Career Scientist (ECS) Great Debate, the 2019 General Assembly invites participants to join a round-table discussion where everyone will be given the opportunity to discuss this year’s chosen topic: “How can Early Career Scientists prioritise their mental wellbeing?” Whether you are in Vienna or elsewhere, be sure to follow and join in the debates using #EGU19GDB on Twitter.

Educational & Outreach Symposia (EOS)

Educational and Outreach Symposia are sessions dedicated to all things education and outreach, and include the Geosciences Information for Teachers (GIFT) workshop, a long-running event for high school teachers that helps shorten the time between discovery and textbook.

Science-Art-Public Events (SCA)

The Science-Art-Public Events give you the opportunity to observe, discuss, and take part in activities focused on integrating art and science and society. This year the conference will feature three events relating to this topic.

The Geoscience Games Night session offers a space to gather, socialize, and play some games based on Geoscience! Bring along your own games or try one of the others in the session and meet the people who created them.

You can also join the OpenStreetMap Mapathon to help put some of the world’s most vulnerable places on the map and learn more about crowdsourcing, open data and humanitarian response. No experience is necessary – just bring your laptop and the session conveners will provide the training.

Finally, the conference will be hosting a screening of the award-winning documentary A Plastic Ocean. Join the event to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film’s producer, Jo Ruxton, at the end of film.

Medal Lectures and Lectures organized by related scientific societies (MAL, LRS)

There will be 4 lectures organized by related scientific societies as well as a grand total of 45 Medal Lectures this year!

Stand Alone Lectures (SAL)

the 2019 meeting will also be hosting two stand-alone lectures.

In the first stand-alone lecture, geophysicist Xavier Le Pichon will discuss the possibility of relating plate tectonics and mantle dynamics without ambiguity: Pangea and lower mantle: Are we entering into a new paradigm? From Plate Tectonics to Global Tectonics.

The growing frequency of extreme hydrologic events is becoming increasingly apparent at the global scale. In addition, population increases in flood prone areas intensifies the impacts associated with these extreme flood events. in this second stand-alone lecture, Giulia Sofia from the University of Connecticut will provide an overview about this complex set of interactions, and will showcase some study cases where human drivers, rainfall patterns and floods have been analysed.

Meet EGU (EGU)

Meet EGU does exactly what it says on the tin – these sessions are a great opportunity to get to know your division president and early career representative, put faces to names and find out what’s going on in the Union.

Townhall and Splinter Meetings (TSM)

Townhall Meetings allow participants to take part in a lot of open discussion. This year’s meetings cover a huge variety of topics, from a talk on geoscientific drone (UAV/UAS) applications through to a discussion on how EGU can minimise the carbon footprint of the General Assembly. Like Townhall Meetings, Splinter Meetings are organised by participants, but they are typically smaller and can be either public or by invitation only.

The EGU General Assembly is taking place in Vienna, Austria from 7 to 12 April. Check out the full session programme on the General Assembly website and follow the Assembly’s online conversation on Twitter (#EGU19 is the official conference hashtag) and Facebook.

GeoTalk: Making their mark: how humans and rivers impact each other

GeoTalk: Making their mark: how humans and rivers impact each other

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Serena Ceola, a hydrologist and assistant professor at the University of Bologna, Italy, who studies interactions between humans and river systems. At the upcoming General Assembly she will be recognised for her research contributions as the recipient of the 2019 Hydrological Sciences Division Outstanding Early Career Scientists Award.

Thanks for talking to us today! Could you introduce yourself and tell us a little more about your career path so far?

I was born in Padova, Italy, and studied environmental engineering at the University of Padova, from which I obtained a master’s degree in 2009. Since my bachelor’s studies, I was fascinated by hydrology: both my bachelor’s and master’s thesis dealt with the availability of river discharge, which is the amount of water flowing through a river channel.

Then, in 2009 I moved to Lausanne in Switzerland and I continued my studies with a PhD at the Laboratory of Ecohydrology of the École Polytechnique Fédérale de Lausanne (EPFL). My PhD thesis focused on the implications of river discharge availability on river ecosystems (namely algae and macroinvertebrates). Since 2013, I have been based at the University of Bologna, Italy, currently as a junior assistant professor. Now my main research project focuses on the relationship between river discharge availability and human activities, both at local and global scales.

Serena Ceola collecting benthic macroinvertebrates used for a small-scale flume experiment in Lunz-Am-See, Austria. (Photo Credits: Serena Ceola)

What got you interested in environmental engineering and hydrology? What brought you to study this particular field?

Studying environmental engineering was the perfect trade-off between being an engineer and focusing on environment sustainability and protection. During my studies I have developed a forma mentis that allows me to quantitatively solve (or try, at least) any issue. Since I was always fascinated by water, hydrology was my ideal choice. I must also say that my professors played a key role: their enthusiasm and passion overwhelmed me, involving me in such a fascinating subject.

At this year’s General Assembly, you will receive the Outstanding Early Career Scientists Award in the Hydrological Sciences Division for your contributions to understanding of the relationship between river environments and human activities. Could you tell us more about your research in this field and its importance?

River discharge has always been my main research focus. During the last 10 years, I had the unique opportunity to focus on the possible implications of river discharge .

Human activities, such as dam development, deforestation, agriculture, urbanization, etc. are known to affect how much flowing water is available to river ecosystems. In particular, I realised that no one before had conducted a quantitative analysis of how human-derived modifications to the natural flow of a river could possibly affect its environment.

Flume experimental facilities. (Photo Credits: Serena Ceola)

During my PhD, I performed an experiment by building small artificial rivers aimed at quantitatively estimating how

stream algae and macroinvertebrates respond to two flow regimes, one influenced by human activity and one unaffected. The unaffected river regime was naturally variable while the other was constant, like downstream a dam.

The experimental results were promising, thus allowing me to develop an analytical model capable of reproducing observed biological data in a real river network, also proving its applicability in presence of anthropogenic influence.

Hydrologic controls on basin-scale distribution of benthic invertebrates: study area and average habitat suitability values for a mayfly species. Image redrawn from Ceola et al., 2014, WRR, https://doi.org/10.1002/2013WR015112

When focusing on human activities, it is extremely important to estimate the interrelations between humans and waters. Here, I was lucky enough to start working with satellite data measuring the distribution of human population in space and time across the globe. By using satellite nightlight images, I analysed the spatial and temporal evolution of human presence close to streams and river. When considering extreme events like floods, I also had the opportunity to identify the regions most at risk for flood deaths and damage to infrastructure.

At the General Assembly, you plan to give a talk about working with global high-resolution datasets, such as nightlight data, to better understand how human and water systems affect each other. What are some of the possibilities made available through this kind of analysis? What doors does this research open, so to speak?

Working with global high-resolution datasets, and in particular with datasets covering several years, allows one to analyse and inspect how human processes and hydrological processes have evolved and interacted in time. This kind of analysis offers the opportunity to study how human pressure on river flows has changed over time and examine urbanization processes influenced for instance by proximity to rivers. This method also allows researchers to analyze how people move as a consequence of climatic conditions, such as extreme floods or droughts.

Spatial evolution of human presence close to stream and rivers by using satellite nightlight images. Image taken from Ceola et al., 2015, WRR, https://doi.org/10.1002/2015WR017482

Before I let you go, what are some of the biggest lessons you have learned so far as a researcher? What advice would you impart to aspiring scientists?

Based on my experience so far my first recommendation is “Be passionate!” Since you will spend a lot of time (days and nights) on a research project, it is fundamental that you love what you are doing. Although sometimes it is difficult and you cannot see any positive outcome, be bold and keep working on your ideas. Then, search for data to support your ideas and scientific achievements (although sometimes it is quite challenging and time-consuming!), but this proves that your research ideas are correct. Interact with colleagues, ask them if your ideas are reasonable and create your research network. Finally, work and collaborate with inspiring colleagues, who guide and support your research activities (I had and still have the pleasure to work with fantastic mentoring people)!

Interview by Olivia Trani, EGU Communications Officer

GeoTalk: Research reflections and lessons learned from Pinhas Alpert

GeoTalk: Research reflections and lessons learned from Pinhas Alpert

GeoTalk interviews usually feature the work of early career researchers, but this month we deviate from the standard format to speak to Pinhas Alpert, professor in geophysics and planetary sciences at Tel Aviv University and recipient of the 2018 Vilhelm Bjerknes Medal. Alpert was awarded for his outstanding contributions to atmospheric dynamics and aerosol science. Here we talk to him about his career, research, and life lessons he has learned as a scientist.  

Thank you for talking to us today! Could you introduce yourself and tell us a little more about your career path?

I was born in Jerusalem, Israel on 28 Sept 1949. I received my BSc (Physics, Math & Computers) and MSc (Physics) as well as my Phd (Meteorology) at the Hebrew University of Jerusalem (1980; supervised by late Prof. Yehuda Neumann, Head of the Department of Meteorology).

Then I did my post-doc studies at Harvard University (US) with Professor Richard Lindzen (1980-1982) and got a position at Tel Aviv University in 1982.

I served as the Head of the Porter School of Environmental Studies, Tel-Aviv University, Israel, from 2008 to 2013, following three years as Head of the Department of Geophysics and Planetary Sciences also at Tel Aviv University.

My research focuses on atmospheric dynamics, climate, numerical methods, limited area modeling, aerosol dynamics and climate change. As part of my PhD, I built an atmospheric model, which is used in Belgium (LLN) and Finland (UH) for research.

I’ve published three books, and I am the co-author of more than 347 articles (240 peer-reviewed; 107 in books).

Some more recent work includes developing with my colleagues a novel way for monitoring rainfall using cellular network data. From this method we were able to create a new kind of advanced flood warning system.

I also developed a novel Factor Separation Method in numerical simulations. This methodology allows researchers to calculate atmospheric synergies, and has been adapted by many groups worldwide.

I established and head the Israel Space Agency Middle East Interactive Data Archive (ISA-MEIDA). Currently it is called the Israeli Atmospheric and Climatic Data Center (IACDC), which provides easy access to geophysical data from Israel and across the globe. I served as co-director of the GLOWA-Jordan River BMBF/MOS project to study the water vulnerability in the E. Mediterranean and also served as the Israel representative to the IPCC Third Assessment Report Working Group 1.

In addition to my research projects and positions I have supervised 42 Master students and 23 Doctoral students; some of them have become professors themselves in universities in Israel and abroad.

My current group consists of nine students as well as four post-docs and researchers.

I married my wife Rachel (RN) in 1971 and we have eight children and sweet grandchildren (not to count).

This year you received the 2018 Vilhelm Bjerknes Medal for your outstanding contributions to atmospheric dynamics and aerosol science, most notably your involvement with the Factor Separation Method and novel monitoring systems.

For those readers who may not be so familiar with your work, could you give us a quick summary of your research contributions and why it’s important?

“Remember to do the research that you love the most.” (Credit: Pinhas Alpert)

The Factor Separation Method, first introduced in 1993, allowed scientists to compute the separation of synergies (or interactions or non-linear processes) among several factors for the first time in a quantitative approach.

This allowed researchers to compare for the first time different factors which contribute to some important processes like: heavy rainfall, floods, cyclone deepening, and model errors. The methods have now been applied in many areas of research, including environmental studies, paleoclimatology, limnology, regional climate change, rainfall analysis, cloud modelling, pollution, crop growth, and forecasting.

As to our novel method for monitoring atmospheric moisture: science today does not really know well enough how rainfall or moisture are distributed in the atmosphere.

This is true for all the world but it is particularly so over semi-arid or mountainous regions. For instance over Israel, a semi-arid region, we have about 100 rain gauges, while data from three cellular companies provide us with about 7000 cellular links from which we can calculate distribution of rain in real-time. Many severe flood events particularly over the semi-arid area of S. Israel have not been monitored at all by the classical approached including rain gauges and radar.

My colleagues and I developed a way to monitor such atmospheric conditions that taps into cellular communication networks (the network that lets us use our mobile phones for example). These networks are highly sensitive to the effects of weather phenomena and are widely spread across the world. By using data recorded by cellular communication providers, we found that these networks can provide important information on dangerous weather conditions.

For example, in one study published in the Bulletin of the American Meteorological Society we demonstrated that the technique could be used to monitor dense fog events. This is very important since there are no alternative methods to monitor fog on roads and highways, and furthermore they contribute to hazardous weather in which often hundreds of cars may be involved.

At the 2018 General Assembly, you gave a medal lecture on your personal perspective on the evolution of atmospheric research over time. What are some of the biggest lessons you have learned as a researcher?

My take-away messages were:

It seems impossible to predict which research will become a scientific breakthrough because,

  1. the message from your research came too early. For example, the Italian scientist Amedeo Avogadro first proposed the existence of a constant number of molecules in each kilomole of gas and calculated this number (6.022×1023). However, he was ridiculed for it, and only after he passed away was it accepted by the scientific community. Now every student must learn the Avogadro number in any basic thermodynamics course.
  2. the message was not clear or strong enough: When we are sure about our finding we must be strong in our statements and not too modest. Otherwise, the scientific community assumes that what we claim in our article is only a conjencture.
  3. the message was not given the right exposure. For example, in 1778-9 the French scholar Pierre-Simon Laplace was the first to develop the mathematical terms the Coriolis Force, an important term in physics that explains air acceleration due to Earth’s rotation. However, it was until 60 years later that the French mathematician Gaspard-Gustave Coriolis gave these terms their physical meaning, i.e. that air-parcels in the Northern Hemisphere for instance turn to the right due to the Earth rotation. And, this was the main reason why these terms were called after Coriolis and not after Laplace.

 

Pinhas Alpert receiving the Vilhelm Bjerknes Medal at the EGU Awards Ceremony during the 2018 General Assembly. (Credit: EGU/Foto Pfluegl)

I also discussed whether researchers should invest their time in a concentrated topic, or spread their interests. A common question in atmospheric research, which is particularly bothering early career researchers, is which of these primary three directions should they choose to follow: 1. theoretical approach; 2. analysis of observations and 3. Employ atmospheric models.

One option is to spread your efforts in two or three of these directions. while the more easy approach is often to focus on only one of these three routes. My take-away message during my talk was that, while it certainly more difficult to spread your research to 2-3 of these pathways, it is a very personal decision. There is no right answer that applies to everyone, and your choice depends very much on your personal preference. Remember to do the research that you love the most.

And the other most important take-away message for success is hard work. As Thomas Edison once said in an interview in 1929, “None of my inventions came by accident. I see a worthwhile need to be met and I make trial after trial until it comes. What it boils down to is one per cent inspiration and ninety-nine per cent perspiration.”

Recently, the IPCC released a special report on the consequences of global warming and the benefits of limiting warming to 1.5ºC above pre-industrial levels. You had mentioned that you served as the Israel representative to the IPCC Third Assessment Report Working Group I. What would you say were some key lessons learned from contributing to an IPCC report? Do you think it is important for researchers to be involved in the policy process?

One of the most amazing things I have learned from my participation there was how much politics and debate are involved there. There are a lot of negotiations between the representatives of the various countries, who sometimes spend hours on the wording of sentences.

Yes, it is very important for researchers to bring the messages from their work to decision makers. However, this should only be done when you are convinced that your results are important for the society. Hence, it is my opinion that early career scientists should focus more on promoting their science and be less involved in the policymaking process. Without a strong scientific backing, it may interfere with your research. Again, here as well, the decision should be strongly based on your personal feelings.

Interview by Olivia Trani, EGU Communications Officer

EGU announces 2019 awards and medals

EGU announces 2019 awards and medals

From 14th to the 20th October a number of countries across the globe celebrate Earth Science Week, so it is a fitting time to celebrate the exceptional work of Earth, planetary and space scientist around the world.

This week, the EGU announced the 45 recipients of next year’s Union Medals and Awards, Division Medals, and Division Outstanding Early Career Scientists Awards. The aim of the awards is to recognise the efforts of the awardees in furthering our understanding of the Earth, planetary and space sciences. The prizes will be handed out during the EGU 2019 General Assembly in Vienna on 7-12 April. Head over to the EGU website for the full list of awardees.

Sixteen out of the total 45 awards went to early career scientists who are recognised for the excellence of their work at the beginning of their academic career. Twelve of the awards were given at division level but four early career scientists were recognised at Union level, highlighting the quality of the research being carried out by the early stage researcher community within the EGU.

Sixteen out of the 45 awards conferred this year recognised the work of female scientists. Of those, six were given to researchers in the early stages of their academic career.

As a student (be it at undergraduate, masters, or PhD level), at the EGU 2018 General Assembly, you might have entered the Outstanding Student Poster and PICO (OSPP) Awards. A total of 64 poster contributions by early career researchers were bestowed with a OSPP award this year recognising the valuable and important work carried out by budding geoscientists. Judges took into account not only the quality of the research presented in the posters, but also how the findings were communicated both on paper and by the presenters. Follow this link for a full list of awardees.

Further information regarding how to nominate a candidate for a medal and details on the selection of candidates can be found on the EGU webpages. For details of how to enter the OSPP Award see the procedure for application, all of which takes place during the General Assembly, so it really couldn’t be easier to put yourself forward!

The EGU General Assembly is taking place in Vienna, Austria from 7  to 12 April. The call-for-abstracts will open in mid-October. Submit yours via the General Assembly website.