GeoLog

GeoTalk

GeoTalk: the climate communication between Earth’s polar regions

GeoTalk: the climate communication between Earth’s polar regions

Geotalk is a regular feature highlighting early career researchers and their work. In this interview, we caught up with Christo Buizert, an assistant professor at Oregon State University in Corvallis, who works to reconstruct and understand climate change events from the past. Christo’s analysis of ice cores from Greenland and Antarctica helped reveal links between climate change events from the last ice age that occurred on opposite ends of the Earth. At this year’s General Assembly, the Climate: Past, Present & Future Division recognized his innovative contributions to palaeoclimatology by presenting him with the 2018 Division Outstanding Early Career Scientists Award.

Christo, thank you for talking to us today! Could you introduce yourself and tell us about your career path so far?

Thanks for having me on GeoTalk! I’m a palaeoclimate scientist working on polar ice cores (long sticks of ancient ice drilled in Greenland and Antarctica), combining data, modeling and fieldwork. My background is in physics, and I did a MSc thesis project on quantum electronics. As you can see, I ended up in quite a different field. After teaching high school for a year in my home country the Netherlands, I pursued a PhD at the Niels Bohr Institute in Copenhagen, Denmark, working on ice cores. I must say, doing a PhD is a lot easier than teaching high school! I have gained a lot of respect for teachers.

After obtaining my PhD I moved to the US for reasons of both work and love (not necessarily in that order). I got a NOAA Climate & Global Change Postdoctoral Fellowship at Oregon State University (OSU). OSU has a great palaeoclimate research group and Oregon is one of the prettiest places on Earth, so the decision to stick around was an easy one.

What inspired you to pursue palaeoclimatology after getting your MSc degree in quantum electronics?

I wish I had a better answer to this question, but the truth is that I was drawn by the possibility of doing fieldwork in Greenland, mainly.

At the General Assembly, you received a Division Outstanding Early Career Scientist Award for your work on understanding the bi-polar phasing of climate change. For those of us who aren’t familiar, could you elaborate on this particular field of study?

The final drill run of the WAIS Divide ice core, with ice from 3,405 m (11,171 ft) depth that has been buried for 68,000 years. (Credit: Kristina Slawny/University of Bern)

During the last ice age (120,000 to 12,000 years ago), the world experienced some of the most extreme and abrupt climate events that we know of, the so-called Dansgaard-Oeschger (D-O) events. About 25 of these D-O events happened in the ice age, and during each of them Greenland warmed by 8 to 15oC within a few decades. Each of the warm phases (called interstadials) lasted several hundreds to thousands of years. Greenland ice cores provide clear evidence for these events.

The abrupt D-O events are thought to be linked to changes in ocean circulation. Heat is transported to the Atlantic Ocean by the Atlantic Meridional Overturning Circulation (AMOC) from the southern hemisphere to the northern hemisphere. The AMOC keeps the Nordic Seas free of sea ice and effectively warms Greenland, particularly during the winter months. However, the strength of this heat circulation went through abrupt changes during the last ice age. Marine sediment data and model studies show that changes to the AMOC strength caused the extreme temperature swings associated with the D-O events.

During weak phases of the AMOC, less heat and salt are brought to the North Atlantic, leading to expansive (winter) sea ice cover and cold conditions in Greenland. These are the D-O cycle’s cold phases, the so-called stadials. And vice versa, during the AMOC’s strong phases, the ocean transports more heat northwards, reducing sea ice cover and warming Greenland. These are the warm (interstadial) phases of the D-O cycle.

When the AMOC is strong, it warms the northern hemisphere at the expense of the southern hemisphere. This inter-hemispheric heat exchange is sometimes referred to as ‘heat piracy,’ since the North Atlantic is ‘stealing’ heat from the southern hemisphere. So when Greenland is warm, we see Antarctica cool, and when Greenland is cold, Antarctica is warming. These opposite hemispheric temperature patterns are called the bipolar seesaw, after the playground toy. Using a new ice core from the West Antarctica Ice Sheet (the WAIS Divide ice core), we were able to study the relative timing of the bipolar seesaw at a precision of a few decades – which is extremely precise by the standards of palaeoclimate research.

An infographic explaining the opposite hemispheric temperature patterns, also known as the bipolar seesaw (Illustration by David Reinert/Oregon State University).

We found that the temperature response to the northern hemisphere’s abrupt D-O events was delayed by about two centuries at WAIS Divide. This finding shows that the effects of these D-O events start in the north, and then are transmitted to the southern high-latitudes via changes in the ocean circulation. If the atmosphere were responsible, transmission would have been much faster (typically within a year or so). State-of-the-art climate models actually fail to simulate this 200-year delay in the Antarctic response, suggesting they are missing (or overly simplifying) some of the relevant physics of how temperature anomalies are propagated and mixed in the global ocean. The timescale of two centuries is unmistakably the signature of the ocean, in my view, and so it is an interesting target for testing models.

At the meeting you also gave a talk about the climatic connections between the northern and southern hemispheres during the last ice age. Could you tell us a little more about your findings and their implications? 

A volcanic ash layer in an Antarctic ice core. Volcanic markers like these were used in the new study to synchronize ice cores from across Antarctica. (Credit: Heidi Roop/Oregon State University)

I presented some recently published work that elaborates on this 200-year delay mentioned earlier. Together with European colleagues, we synchronized five Antarctic ice cores using volcanic eruptions as time markers. This makes it possible to study the timing of the seesaw across the entire Antarctic continent with the same great precision as at WAIS Divide. It turns out that the 200-year delayed oceanic response to the northern hemisphere’s abrupt climate change is visible all over Antarctica, not just in West Antarctica.

But the exciting thing is that by looking at the spatial picture, we detect a second mode of climatic teleconnection, superimposed on the bipolar seesaw we talked about earlier. This second mode has zero-time lag behind the northern hemisphere, suggesting that this mode is an atmospheric teleconnection pattern. In my talk I used postcards and text messages as an analogy for these two modes. The oceanic mode is like a postcard, that takes a long time to arrive in Antarctica (200 years). The atmospheric mode is like a text message that arrives right away.

The atmospheric circulation change (the “text message”) causes a particular temperature pattern over Antarctica, with cooling in some places and warming in others. Think of this as the “fingerprint” of the atmospheric circulation. We then compared the ice-core fingerprint to the fingerprints of several wind patterns seen in modern observations. We found that the so-called Southern Annular Mode, a natural mode describing the variability of the westerly winds circling Antarctica, is the best modern analog for what we see in the ice cores.

An infographic explaining how Earth’s polar regions communicate with each other (Illustration by Oliver Day/Oregon State University)

Another piece of the puzzle is that atmospheric moisture pathways to Antarctica change simultaneously with the atmospheric mode. All this supports the idea that the southern hemisphere’s westerly winds respond immediately to abrupt climate change in the North Atlantic. When D-O warming happens in Greenland the SH westerlies shift to the north, and vice versa, during D-O cooling they shift to the south.

This had been predicted in models, and some limited evidence was available from the WAIS Divide ice core, but the new results provide the strongest observational evidence for this effect. This movement of the westerlies has important consequences for sea ice, ocean circulation, and perhaps even CO2 levels and ice sheet stability. So it really urges us to look at these D-O cycle in a global perspective.

You’ve enjoyed success as a researcher, not least your 2018 EGU Award. As an early career scientist, do you have any words of advice for graduate students who are hoping to pursue a career as a scientist in the Earth sciences?

I’m sure there are many different routes to becoming a successful researcher. Developing your own ideas and insights is key, and the secret to having good ideas is having many ideas, because most of them end up being wrong! So be creative and go out on a limb. I am lucky to have had supervisors who gave me a lot of freedom to explore my own ideas. I would also encourage everybody to develop skills in programming and numerical data analysis, for example in Matlab or python.

Christo Buizert (right) and Didier Roche, President of the Climate: Past, Present & Future Division, (left) at the EGU 2018 General Assembly (Credit: EGU/Foto Pflugel).

Frustrating and unfair as it may be, luck plays an important role in getting your research career started. My main PhD project did not work out, but I had a very productive postdoc that grew out of a side project. I ended up in the right place at the right time, because the WAIS Divide ice core had just been drilled, and I got the privilege to work with some of the best ice core data ever measured.

Research is fundamentally a collaborative enterprise, and so developing a good network of collaborators is maybe the most important thing you can do for yourself. Be generous and helpful to your colleagues, and it will be rewarded.

A career in science sometimes feels like a game of musical chairs, with fewer and fewer positions available as you go along. But if you can hang in there it’s definitely worth it; we have the privilege of thinking about interesting problems, traveling to beautiful places, all while interacting with a global network of fantastic colleagues. Could it get much better?

Interview by Olivia Trani, EGU Communications Officer

GeoTalk: Sharing geoscience with kids and educators

GeoTalk: Sharing geoscience with kids and educators

GeoTalk interviews usually feature the work of early career researchers, but this month we deviate from the standard format to speak to Marina Drndarski, a biology teacher at the primary school Drinka Pavlović in Belgrade, Serbia. Marina has been involved with EGU’s geoscience education activities for more than five years; she is an active contributor to Planet Press articles, bitesize press releases for kids, parents and educators, and has participated in the Geosciences Information for Teachers (GIFT) workshops at the General Assembly.

Thanks for talking to us today! Could you introduce yourself and tell us about your career path?

Hi geoscientific people,

My name is Marina, and I teach biology and environmental studies in primary and secondary schools in Belgrade, Serbia.

As an experienced teacher I realised that it’s not only my priority to give lectures and assess my students’ knowledge inside the four walls of my classroom, but also to give them an opportunity to get out of the box: whether that’s involving them in projects, taking part in active citizenship, exploring, researching, debating, or searching for the most improbable and unexpected solutions to problems in everyday life.

During my 25 years of teaching, I worked as an expert for education quality standards governed by the Ministry of Education of the Republic of Serbia. I have written several biology and environmental handbooks, workshops and teaching learning materials for students and teachers.

With my students I have participated in several national and international projects (such as the Global Designathon SerbiaEco Schools Serbia, the WWF European Schools For a Living Planet, Creating a School (on Mars) From Scratch, and the 2018 International Schools Essay Competition and Debate to name only a few). Meanwhile, I have also completed specialised academic studies on environmental protection and law at Faculty of Law, University of Belgrade.

After field work with Eco-Musketeers on Deliblato sands, one of the Special Nature Reserve in Serbia (Credit: Marina Drndarski)

Could you tell us about your involvement with EGU and how that has progressed over the years?

My first experience with the EGU GIFT workshops was at the 2014 General Assembly. First, I was fascinated by the huge crowds of the scientific community, rushing through the halls to be a part of The Face of the Earth (the 2014 conference theme). As part of the event, with colleagues from all around the world, I really enjoyed the inspirational lectures over four days. Although the GIFT program ended by the middle of the week, I stayed up to two more days, until the closing of the conference.

During the EGU GIFT 2014 poster sessions, I presented my work with my students, members of the Eco-Muskeeters, and enjoyed the experience of exchanging teaching methodology with other colleagues and visitors. Among the various activities and workshops that we had that year, I would single out Bárbara Ferreira’s (the EGU Media and Communications Manager) presentation about bitesize press releases for kids, Planet Press. After the presentation we were offered to participate in the translation of the Planet Press releases into our native tongues, which I immediately and wholeheartedly accepted.

After great experience participating in 2014, I searched for a new opportunity to participate again for EGU GIFT 2015, The Voyage through the Scales. This time I came with a new poster, Experiment-o-mania, and short oral presentation to GIFT participants on how I use Planet Press articles in my classes.

Although I normally do not teach geosciences, I have found many ways to use the Planet Press releases in teaching biology, especially in environmental science.

During the last few years I have translated all of the articles from English to Serbian. I can confess that I honestly enjoy in each of the new press releases.

In addition to helping review Planet Press articles, you also incorporate texts from Planet Press and GeoTalk into your own lessons! How do you use these articles to teach your students about Earth science?

Students are given different articles from Planet Press which deal with one topic, such as climate change or global warming. Each pair of students also has a piece paper in front of them, with the theme on the paper’s center. As the student pair read the received articles (two for each of them), they construct their maps.

After that, all together, we construct the class conceptual map and discuss and propose suggestions for how each of us can influence to environment based on the principles of sustainable development, such as reducing carbon emissions, saving energy and using water wisely.

At the end of the class, students take a climate change quiz on Kahoot (https://create.kahoot.it/; Planet Press) or Quizlet.

Writing a conclusion is an important part of any piece of writing, so for the next class the students write an essay overview to summarise the topic.

Example of the class conceptual map for climate change and global warming. (Credit: Marina Drndarski)

In your own experience, what have students gained from these kid-friendly posts and press releases?

Planet Press: Remove carbon dioxide from the air or risk young people’s future

In my opinion, most of the obligatory textbooks for elementary or secondary school have topics such as climate change, Earth’s structure, glaciers, landslides etc. that are explained too narratively.

Most of the main text are described as definitions which students have to learn as facts, without putting students in the center of learning, placing themselves in a position to explore the topic, perform a scientific procedure and make a discovery, demonstrate a known fact, solve problems, or suggest solutions which may be achievable.

On the contrary, all the articles from Planet Press and GeoTalk provide real examples of field research and show students that science is actually happening somewhere in the world. Most importantly for students, are that most of the articles often show how science can influence everyday life, and that there are possible solutions and recommendations for what we can do to relieve pressure on the planet.

Additionally the questions in the “Find out more” section provide me with an opportunity to develop discussions in class.

Also, the possibility that the articles can be read in a foreign language, for example in English or German (languages which are taught at my school), give students the opportunity to improve their language skills.

What is your advice for scientists that want to work with school kids?

First, it is important for students to understand that somewhere in the world a whole team of scientists zealously work to improve the living conditions of the planet. New findings can help us see the actual state of the planet and give us the big picture of what we need to see. That’s why the Planet Press releases can open new perspectives to students to explore more through the offered material and links or to find answers to some scientific questions, feeding their curiosity and helping them develop awareness regarding the problems which concern us all.

I would suggest one-hour live meetings with scientists and students, whether the scientists are directly addressing kids in the classroom or responding via the internet. Therefore, it is necessary to go over one scientific topic with the students before the meeting in order to allow the students enough time to prepare questions for discussion.

Also, students can be citizen scientists on research teams, and engage in mini projects, such as collecting information from local areas or visiting researchers in the field. Perhaps even some of the students can give new information to researchers!

I am deeply aware that many scientists suffer from lack of time, but this kind of learning can be really helpful for students.

Interview by Olivia Trani, EGU Communications Officer

Some of Marina’s representative publications over last few years

Miličić, D., Drndarski, M., Trajković J., Savić T., Lučić L., and Pavković-Lučić S. (2018). A matter of health: Evaluation of health habits in pupils in Primary School in Serbia; 4th Balkan Scientific Conference on Biology, Nov. 1st-3rd, 2017. Plovdiv, Bulgaria (in press).

Drndarski, M. and Turšijan, T. (2015). Application of case study method of the conceptual map (brain map) in the realization of the education program content of environmental protection (climate change). Book: Teacher as a researcher: examples of good practice, Ministry of education, science and technological development Republic of Serbia, p. 41-47 (usage the Planet Press articles to create conceptual maps about the climate change) ISBN 978-86-7452-064-2. (in Serbian) (https://www.researchgate.net/publication/279195498_Nastavnik_kao_istrazivac_primeri_dobre_prakse)

Drndarski M. (2015). Experiment-о-mania – Abstract for the EGU General Assembly 2015 – Geophysical Research Abstracts Vol. 17, EGU2015-4692-1, 2015. EGU General Assembly 2015. © Author(s) 2015. CC Attribution 3.0 License.

Drndarski M., (2014). All for the Planet, Planet for All – Abstract for the EGU General Assembly 2014 – Geophysical Research Abstracts Vol. 16, EGU2014-PREVIEW, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

Miličić, D., Drndarski, M., Holod, A., Lazić, Z. (2014). Fibonacci and golden ratio in interdisciplinary teaching. Teaching Innovations, XXVII, 2014/4, str. 86–91. (http://scindeks.ceon.rs/Article.aspx?artid=0352-23341404086M&lang=en)

GeoTalk: Nilay Dogulu, Early Career Scientist Representative

GeoTalk: Nilay Dogulu, Early Career Scientist Representative

In addition to the usual GeoTalk interviews, where we highlight the work and achievements of early career researchers, this month we’ll also introduce one of the Division early career scientist representatives (ECS). They are responsible for ensuring that the voice of EGU ECS membership is heard. From organising short courses during the General Assembly, through to running and attending regular ECS representative meetings, their tasks in this role are varied. Their role is entirely voluntary and they are all active members of their research community, so we’ll also be touching on their scientific work during the interview.

Today we are talking to Nilay Dogulu, ECS representative for the Hydrological Sciences (HS) Division and past chair of the Young Hydrologic Society.

Before we get stuck in, could you introduce yourself and tell us a little more about yourself, your involvement with EGU and how you became interested in hydrology?

I am a PhD candidate at the Middle East Technical University (METU) in Ankara, Turkey, researching clustering methods for data-driven hydrology at the Water Resources Laboratory. This year I attended the General Assembly (GA) in Vienna for the fifth time in a row. Since 2014, the Assembly has been the one and only conference that I have persistently and willingly participated in. The Hydrological Sciences (HS) division’s scientific programme at the GA had a special role in shaping my career as a researcher, so I would like to share my journey in the hydrological sciences lightened up by the EGU GA and its HS community.

First, little about me. I am a civil engineer by training. I was a third year (BSc) student at METU (ODTU) when I took the course “Engineering Hydrology.” It was the first time I learned about the terms catchment, basin and hydrograph. In that very semester I had the opportunity to participate in the 5th World Water Forum in Istanbul. That was it. I was determined to specialize in water for my future career.

To broaden my understanding of hydrological processes and gain a critical view of the latest hydrology topics, I gathered the courage—as only a BSc student at the time—to attend the 6th National Hydrology Congress and the 2nd National Flood Symposium. Then a three-month internship at the State Hydraulic Works of Turkey introduced me to the wider community of hydrological sciences in the world.

My class notes from the Engineering Hydrology course back in March 2009 (Credit: Nilay Dogulu)

In Fall 2011, I joined the FLOODRisk Master to study floods, from modelling them to understanding their socio-economic effects. This two-years programme enriched my academic background on flood risk management and provided me with different insights into water-related problems.

Could you tell me about your first experience with the EGU General Assembly?

With EGU HS Division president Elena Toth (right) and president-elect Maria-Helena Ramos (left) at EGU 2018

The EGU GA brings together researchers from all around the world. The EGU Hydrological Sciences Division is EGU’s largest division with a diverse and comprehensive scientific programme at the GA, large enough to fill in the whole second (red) floor of the conference venue.

The EGU HS division is a great platform aimed at addressing current research challenges in hydrology. During the GA, one can follow up with the latest research on various topics within these areas and network with members (of all stages) of this great community. At the 2018 EGU GA, hydrological sciences programme had 2350 abstracts submitted to 91 HS-lead sessions (66 oral and poster sessions, 6 poster only sessions, 19 PICO sessions)—equivalent to 13.5% of total EGU GA submissions.

Given this, I was very motivated to experience the General Assembly for the first time! I submitted an abstract summarizing part of my MSc research—on predictive uncertainty estimation for flood forecasting using data-driven modelling techniques; and once it was accepted, I started to get ready for EGU and Vienna! Flight and accommodation booked, poster printed, weekly conference schedule prepared. This was the first poster presentation of my career and I was quite excited. Luckily, all went really well.

EGU Hydrological Sciences Division

I remember having a busy week at EGU 2014: from presenting my first poster, working on a manuscript with my co-authors, as well as attending project meetings, sessions on flood forecasting and flood risk management, and short courses organized by the Young Hydrologic Society (YHS).

There were many interested people visiting my poster and asking questions. There were many posters I visited too—I have to admit, sometimes I asked so many questions that the presenters thought  I was an OSPP Award judge.

Throughout the week I listened presentations, many of which were given by researchers I cited in my master’s thesis. Matching the papers with authors’ faces was amazingly so much fun! Moreover, I arranged a small meeting with my co-authors to discuss the manuscript draft (which has been later published in HESS) that we had only been working on remotely before then.

At the time, I was also working for the EU-FP7 project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). The EGU GA is an excellent time for research project teams, editorial boards of journals, etc. to schedule meetings.  ASTARTE team (26 partners from 16 countries) also took this opportunity to meet up to discuss the progress following the project’s first 6-months period. During this meeting, I presented one of the very important deliverables of the project which focused on tsunami resilience from a social sciences perspective.

On the Saturday after the conference there was the Vienna Catchment Science Symposium organized by the Vienna University of Technology Centre for Water Resources Systems. It proved to be a very enlightening symposium for a young hydrologist.

Sounds like a great first experience! How has your time at the GA changed over the years?

After enjoying the academic fun of EGU 2014, I wanted to come back to Vienna for EGU 2015. Another reason was that I was very curious why people were heading to the conference venue on the very last hours of the last day (Friday): I left around 5 pm and many people were coming out of metro!

METU Water Resources Lab researchers at EGU 2016

In 2015 I had one PICO presentation and two short course convenerships, How to write (and publish) a scientific paper in hydrology and Hydroinformatics for Hydrology. Both were co-organized with the Young Hydrologic Society and proved to be very successful!

Without any hesitation, I decided to attend EGU 2016 and EGU 2017 in the next years. Although I didn’t have any presentations in 2016, listening to presentations covering my research interests helped me stay updated and synthesise various perspectives on overarching problems in hydrology. The sessions kept me thinking about some questions that had been tingling my mind—which later became the research questions in my PhD thesis proposal.

At EGU 2017, my poster presentation was a literature review on application of clustering methods in hydrology, and actually it attracted more people than I expected. EGU poster sessions provide an excellent way to bring together early career researchers while they stand in front of their posters, paving the way for interesting discussions.

Memories from EGU 2017

My fifth year at the EGU GA last April was great too: including two posters, sessions to co-/convene, YHS events (from short courses to PICO sessions), the EGU ECS Representatives Workshop, YHS Hydrodrinks, the HS division meeting, medal lectures and many other activities. Being an experienced EGU GA participant, I also served as a mentor as part of the EGU mentoring programme designed to help novice conference attendees navigate their first EGU experience.

Almost forgot! On Friday evening, the conveners’ reception (and party, with a different theme every year) takes place at the ACV.

In addition to being an EGU ECS representative, you also are involved with the Young Hydrologic Society (YHS). Could you tell me more about this organisation and your role in YHS?

YHS is a bottom-up initiative that aims to help early career hydrologists interact and actively participate within the hydrological sciences community and beyond. We are a group of motivated PhDs and postdocs who enjoy serving our very own community, considering the needs and interests of young hydrologists.

The YHS is most actively involved with the EGU GA, where we organizing short courses, scientific sessions and social events. The full list of all events that YHS has organized for the EGU GA since 2013 can be found on the YHS webpage. The open call for session proposals for EGU GA 2019 has just closed (deadline 6 September) – there have been quite a number short course submissions (in cooperation with YHS) that will play a significant role in shaping the HS programme for ECSs. YHS Hydrodrinks event held annually at the EGU GA is now a 5-year-old tradition where we meet our new team members. If you are planning to come to EGU 2019, don’t miss the chance to meet fellow hydrologists at the Hydrodrinks (however, please note that this is not a sponsored event). Contributing to the academic and social development of early career hydrologists by organising activities at the EGU GA is a unique and rewarding experience, so get involved!

YHS Hydrodrinks at EGU 2014 (Credit: The waiter)

I joined YHS after meeting the team at EGU 2014. Since then I couldn’t help myself but contribute to the aims of the society in many ways—like organizing short courses at conferences (e.g. Hydroinformatics for Hydrology at the EGU GA), managing and contributing to the YHS Blog (Streams of Thought and Hallway Conversations), and acting as a Board member (secretary 2015-16, chair 2016-17).

Right: EGU 2018 Poster 1—Clustering approaches for analysing similarity in ungauged catchments: input variable selection for hydrological predictions Left: EGU 2018 Poster 2—Input variable selection for hydrological predictions in ungauged catchments: with or without clustering? Bottom Centre: YHS team at EGU 2018 (with only a few missing! It is not east to arrange a common time for everyone, even for a group photo)

I also took over the role of EGU ECS Rep for HS division from Shaun Harrigan at EGU 2017. Being elected as the EGU ECS Rep, I became more enthusiastic about advancing the hydrologic science community equally (and globally) in support of, primarily, the ECS. The ECS Rep is expected to contribute to sustainable and inclusive growth of the EGU HS division by fostering the active participation and integration of ECS and the hydrologic science community globally under the umbrella of EGU, keeping in mind the necessity of creating equal opportunities for ECS to enhance their research and communication skills.

EGU ECS Reps at the EGU GA 2018

The ECS Rep for HS division works in close collaboration with YHS to initiate and support inspirational and intelligent ideas in line with the emerging needs of ECS. You also meet with ECS Reps of other EGU divisions and help the EGU community thrive together with its early career members. My term ends in April 2019. So keep your eye on EGU and YHS websites (and twitter) in early 2019—and apply to become the next EGU ECS Representative (April 2019-April 2021) for the HS division!

Do you have any parting words about your time involved with EGU?

It has been a very long post but now here are the last words. The EGU GA means seeing old friends and past professors, meeting fellow hydrologists and listening to presentations from enthusiastic researchers… plus the annual Hydrodrinks event among many other scientific sessions and short courses organized by YHS! I am glad to serve as the EGU ECS Rep for the Hydrological Sciences division – for the wonderful and inspiring people of the red floor:)

Acknowledgements: I would like to express my sincere thanks to Young Hydrologic Society, especially to Wouter Berghuijs, Shaun Harrigan, Hannes Müller and Tim van Emmerik, for their enthusiasm and support over the last five years.

Interview by Olivia Trani, EGU Communications Officer

 

GeoPolicy: What does working at the European Environment Agency look like? An interview with Petra Fagerholm

GeoPolicy: What does working at the European Environment Agency look like? An interview with Petra Fagerholm

This blog post features an interview with Petra Fagerholm who is currently leading the team on public relations and outreach in the communications department of the European Environment Agency (EEA). Petra gave a presentation about the EEA during the Science for Policy short course at the 2018 EGU General Assembly. In this interview, Petra describes her career path, what it is like to work at the EEA and provides some tips to scientists who are interested in a career in an EU institution or who would like to share their research with policymakers.

Could you start by introducing yourself and the European Environment Agency (EEA)

My name is Petra Fagerholm, I have worked at the European Environment Agency (EEA) in Copenhagen for 14 years. Currently, I am leading the team on public relations and outreach in the Communications department.

The EEA is an EU agency, which was set up in 1993 to inform the policymakers and the citizens about the status of the environment and to contribute to sustainable development. In addition to the headquarters, a ministerial level expert network across Europe was also established. This network is called “Eionet” and it ensures dataflows for reporting and quality consistency of the assessments we produce.

How does the EEA use science and research?

Experts at the EEA use science and research material when producing reports, briefings and assessments. The EEA translates science into tailor-made knowledge needed for policymaking at a European level.

How did you become the Head of Group for Public Relations and Outreach at the EEA?

I studied Biology at the University of Helsinki, in Finland, where I come from. My University pathway was far away from communication and environment. After a year of exchange at the University of Neuchâtel, Switzerland, I became really interested in human physiology and subsequently I graduated a couple of years later from the University of Strasbourg with a French DEA degree in Neurosciences. I was part of the research group on visual psychophysics when Finland became a member in the EU. Finnish politicians were hiring assistants and out of curiosity (and being young… and fearless…), I applied and got the job. I think the drive for change came from the fact that I felt my research topics and hypothesis were very difficult to solve and funding was hard to get in the area of fundamental life sciences research. I aspired to be part of the new “European Project” for Finland.

After my job at the European Parliament, I was lucky to be recruited on a short-term contract at the European Commission as Scientific Officer in the area of Neurosciences. After a break of 1 year during which I was pregnant with my daughter, I worked for 2 years at Merrill Lynch Investment Bank in London. During that period, I came across the announcement for recruiting new staff at the EEA.

At the EEA, I started at the Executive Director’s office working on strategic coordination and on several short-term projects in the field of sustainability. I have always been keen to lead and support others in their career. I lead the support team in that office for 8 years. After 11 years in total in the director’s office, I was ready to change career and was lucky to be transferred to the communications department. My new tasks were to develop stakeholder approaches to support the communication framework at the EEA and continue to lead the team of outreach.

My career path is far from a straight line. I have more often let my heart lead rather than my head on career decisions. People I have met over the years, or more precisely bosses I have had, have helped by always giving me a sense of freedom in my tasks, trusting and believing in me. I have avoided staying in a job where I did not feel my skills were valued.

What is your average day like in the EEA office?

An average day is when I interact across the organisation with experts seeking their input or advice into a stakeholder project I am doing. It can be either enquiring about stakeholder consultations of a report published or developing a programme for a visiting group coming to the EEA. I catch up with everyone in my team on a daily basis to sense if everything is ok. My boss is easily approachable and I speak to her every day.

Twice a month I organise a strategic communication meeting for the Communication colleagues where we share information on production, launches, press, speeches and project across the EEA. Sometimes I receive a visiting group from a university or a ministry. People from across the world contact us to ask for a visit. Usually I kick off the programme by giving a presentation about the EEA after which I am joined by a couple of experts on a specific topic that the visitors are interested in.

What do you enjoy most about your job?

I like to lead a team and see how the members complement each other’s competences.  Allowing each team member to use their full potential and develop new skills is rewarding to me.

Working in a European body and for the environment feels good. I believe the EU is the biggest peace project in the world.

What do you find most challenging about your job?

I find it challenging when it is difficult to measure the real and tangible impact of outreach or communication. It is also sometimes difficult to prioritise activities and to work within the limited resources we have available.

Sometimes we cannot avoid influences from geopolitical storms – it is hard. Europe is about working together and building bridges for everyone.

What advice would you give to a researcher who is interested in a career with the EEA or the EU more broadly?

  • Firstly, you have to be an EU national to apply to the EU institutions. At the EEA, we have 33-member countries and you have to be citizen of one of these.

    Map of the 33-member countries

  • If you see an interesting job advertised in the EU institutions or EEA, apply as many times as you want.
  • Do not give up.
  • Keep your CV updated.
  • Follow EU politics.
  • Read up on EU affairs – it will make a difference in the interview.
  • Apply for jobs in national ministries or institutions – it can sometimes be a gateway to finding a short-term contract as a seconded national expert in the EU or at EEA. Look for a job in an EU lobby organisation who could benefit from your specific research.
  • Apply for the EU Blue Book traineeships https://ec.europa.eu/stages/
  • Register to EPSO – the EU portal for jobs: https://epso.europa.eu/apply/job-offers_en

Do you have any advice for scientists wanting to communicate their research with policymakers?

Less is more. Policymakers will find your research useful if you have concrete examples on how to contribute or solve some of the challenges a policymaker faces.

Use easily understandable language in your communication material. One A4 page is a good length for anything.

Is there anything else you’d like to say or comment on?

Surround yourself every day with people who are positive and who give you energy and pull you up. Believe in yourself and in your passion for what you do. Be proud of the choices you have made and trust in those you will make. There is a reason for everything.

Editor’s Note: since this interview took place, Petra has changed positions within the European Environment Agency and  is currently working as a stakeholder relations expert