Imaggeo on Mondays: Hole in a hole in a hole…

Imaggeo on Mondays: Hole in a hole in a hole…

This photo, captured by drone about 80 metres above the ground, shows a nested sinkhole system in the Dead Sea. Such systems typically take form in karst areas, landscapes where soluble rock, such as limestone, dolomite or gypsum, are sculpted and perforated by dissolution and erosion. Over time, these deteriorating processes can cause the surface to crack and collapse.

The olive-green hued sinkhole, about 20 m in diameter, is made up of a mud material coated by a thin salted cover. When the structures collapse, they can form beautiful blocks and patterns; however, these sinkholes can form quite suddenly, often without any warning, and deal significant damage to roads and buildings. Sinkhole formations have been a growing problem in the region, especially within the last four decades, and scientists are working hard to better understand the phenomenon and the risks it poses to nearby communities and industries.

Some researchers are analysing aerial photos of Dead Sea sinkholes (taken by drones, balloons and satellites, for example) to get a better idea of how these depressions take shape.

“The images help to understand the process of sinkhole formation,” said Djamil Al-Halbouni, a PhD student at the GFZ German Research Centre for Geosciences in Potsdam, Germany and the photographer of this featured image. “Especially the photogrammetric method allows to derive topographic changes and possible early subsidence in this system.” Al-Halbouni was working at the sinkhole area of Ghor Al-Haditha in Jordan when he had the chance to snap this beautiful photo of one of the Dead Sea’s many sinkhole systems.

Recently, Al-Halbouni and his colleagues have employed a different kind of strategy to understand sinkhole formation: taking subsurface snapshots of Dead Sea sinkholes with the help of artificial seismic waves. The method, called shear wave reflection seismic imaging, involves generating seismic waves in sinkhole-prone regions; the waves then make their way through the sediments below. A seismic receiver is positioned to record the velocities of the waves, giving the researchers clues to what materials are present belowground and how they are structured. As one Eos article reporting on the study puts it, the records were essentially an “ultrasound of the buried material.”

The results of their study, recently published in EGU’s open access journal, Solid Earth, give insight into what kind of underground conditions are more likely to give way to sinkhole formation, allowing local communities to better pinpoint sites for future construction, and what spots are best left alone. This study and further work by Al-Halbouni and his colleagues have been published in a special issue organised by EGU journals: “Environmental changes and hazards in the Dead Sea region.”

By Olivia Trani, EGU Communications Officer

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at

Preprint power: changing the publishing scene

Preprint power: changing the publishing scene

Open access publishing has become common practice in the science community. In this guest post, David Fernández-Blanco, a contributor to the EGU Tectonics and Structural Geology Division blog, presents one facet of open access that is changing the publishing system for many geoscientists: preprints.

Open access initiatives confronting the publishing system

The idea of open access publishing and freely sharing research outputs is becoming widely embraced by the scientific community. The limitations of traditional publishing practices and the misuse of this system are some of the key drivers behind the rise of open access initiatives. Additionally, the open access movement has been pushed even further by current online capacities to widely share research as it is produced.

Efforts to make open access the norm in publishing have been active for quite some time now. For example, almost two decades ago, the European Geosciences Union (EGU) launched its first open access journals, which hold research papers open for interactive online discussion. The EGU also allows manuscripts to be reviewed online by anyone in the community, before finally published in their peer-reviewed journals.

This trend is also now starting to be reflected at an institutional level. For example, all publicly funded scientific papers in Europe could be free to access by 2020, thanks to a reform promoted in 2016 by Carlos Moedas, the European Union’s Commissioner for Research, Science and Innovation.

More recently, in late 2017, around 200 German universities and research organisations cancelled the renewal of their Elsevier subscriptions due to unmet demands for lower prices and an open access policies. Similarly, French institutions refused a new deal with Springer in early 2018. Now, Swedish researchers have followed suit, deciding to cancel their agreement with Elsevier. All these international initiatives are confronting an accustomed publishing system.

The community-driven revolution

Within this context, it’s no surprise that the scientific community has come up with various exciting initiatives that promote open access, such as creating servers to share preprints. Preprints are scientific contributions ready to be shared with other scientists, but that are not yet (or are in the process of being) peer-reviewed. A preprint server is an online platform hosting preprints and making them freely available online.

Many journals that were slow to accept these servers are updating their policies to adapt to the steadily growing increase of preprint usage by a wide-range of scientific communities. Now most journals welcome manuscripts hosted by a preprint server. Even job postings and funding agencies are changing their policies. For example, the European Research Council (ERC) Starting and Consolidator Grants are now taking applicant preprints into consideration.

Preprints: changing the publishing system

ArXiv is the oldest and most established preprint server. It was created in 1991, initially directed towards physics research. The server receives on average 10,000 submissions per month and now hosts over one million manuscripts. Arxiv sets a precedent for preprints, and now servers covering other scientific fields have emerged, such as bioRxiv and ChemRxiv.

Credit: EarthArXiv

EarthArXiv was the first to fill the preprint gap for the Earth sciences. It was launched in October 2017 by Tom Narock, an assistant professor at Notre Dame of Maryland University in Baltimore (US), and Christopher Jackson, a professor at Imperial College London (UK). In the first 24 hours after its online launch, this preprint server already had nine submissions from geoscientists.

The server holds now more than 400 preprints, approved for publication after moderation, and gets around 1,600 downloads monthly. The platform’s policy may well contribute to its success – EarthArXiv is an independent preprint server strongly supported by the Earth sciences community, now run by 125 volunteers. The logo, for example, was a crowdsourcing effort. Through social media, EarthArXiv asked the online community to send their designs; then a poll was held to decide which one of the submitted logos would be selected. Additionally, the server’s Diversity Statement and Moderation Policy were both developed communally.

Credit: ESSOAr

In February 2018, some months after EarthArXiv went live, another platform serving the Earth sciences was born: the American Geophysical Union’s Earth and Space Science Open Archive, ESSOAr. The approach between both platforms is markedly different; ESSOAr is partially supported by Wiley, a publishing company, while EarthArXiv is independent of any publishers. The ESSOAr server is gaining momentum by hosting conference posters, while EarthArXiv plans to focus on preprint manuscripts, at least for the near future. The ESSOAr server hosts currently 120 posters and nine preprints.

What is the power of preprints?

How can researchers benefit from these new online sources?

No delays:

Preprint servers allow rapid dissemination. Through preprints, new scientific findings are shared directly with other scientists. The manuscript is immediately available after being uploaded, meaning it is searchable right away. There is no delay for peer-review, editorial decisions, or lengthy journal production.


A DOI is assigned to the work, so it is citable as soon as it is uploaded. This is especially helpful to early career scientists seeking for employment and funding opportunities, as they can show and prove their scholarly track record at any point.


Making research visible to the community can lead to helpful feedback and constructive, transparent discussions. Some servers and participating authors have promoted their preprints through social media, in many cases initiating productive conversations with fellow scientists. Hence, preprints promote not only healthy exchanges, but they may also lead to improvements to the initial manuscript. Also, through these exchanges, which occur outside of the journal-led peer-review route, it is possible to network and build collaborative links with fellow scientists.

No boundaries:

Preprints allow everyone to have access to science, making knowledge available across boundaries.

The servers are open without cost to everyone forever. This also means tax payers have free access to the science they pay for.


Preprint servers are a useful way to self-archive documents.  Many preprint servers also host postprints, which are already published articles (after the embargo period applicable to some journals).

Given the difference between the publishing industry’s current model and preprint practices, it is not surprising to find an increasing number of scientists stirring the preprint movement. It is possible that many of such researchers are driven by a motivation to contribute to a transparent process and promote open science within their community and to the public. This motivation is indeed the true power of preprints.

Editor’s note: This is a guest blog post that expresses the opinion of its author, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.

Geosciences Column: Landslide risk in a changing climate, and what that means for Europe’s roads

Geosciences Column: Landslide risk in a changing climate, and what that means for Europe’s roads

If your morning commute is already frustrating, get ready to buckle up. Our climate is changing, and that may increasingly affect some of central Europe’s major roads and railways, according to new research published in the EGU’s open access journal Natural Hazards and Earth System Sciences. The study found that, in the face of climate change, landslide-inducing rainfall events will increase in frequency over the century, putting central Europe’s transport infrastructure more at risk.  

How do landslides affect us?

Landslides that block off transportation corridors present many direct and indirect issues. Not only can these disruptions cause injuries and heavy delays, but in broader terms, they can negatively affect a region’s economic wellbeing.

One study for instance, published in Procedia Engineering in 2016, examined the economic impact of four landslides on Scotland’s road network and estimated that the direct cost of the hazards was between £400,000 and £1,700,000. Furthermore the study concluded that the consequential cost of the landslides was around £180,000 to £1,400,000.

Such landslides can have a societal impact on European communities as well, as disruptions to road and railway networks can impact access to daily goods, community services, and healthcare, the authors of the EGU study explain.

Modelling climate risk

To analyse climate patterns and how they might affect hazard risk in central Europe, the researchers first ran a set of global climate models, simulations that predict how the climate system will respond to different greenhouse gas emission scenarios. Specifically, the scientists ran climate projections based on the Intergovernmental Panel on Climate Change’s A1B socio-economic pathway, a scenario defined by rapid economic growth, technological advances, reduced cultural and economic inequality, a population peak by 2050, and a balanced reliance on different energy sources.

They then determined how often the conditions in their climate projections would trigger landslide events specifically in central Europe using a climate index that estimates landslide potential from the duration and intensity of rainfall events. The index, established by Fausto Guzzetti of National Research Council of Italy and his colleagues, suggests that landslide activity most likely occurs when a rainfall event satisfies the following three conditions: the event lasts more than three days, total downpour is more than 37.3 mm and at least one day of the rainfall period experiences more than 25.6 mm.

The researchers also incorporated into their models data on central Europe’s road infrastructure as well as the region’s geology, including topography, sensitivity to erosion, soil properties and land cover.

Overview of a particularly risk-prone region along the lowlands of Alsace and the Black Forest mountain range: (a) location of the region in central Europe and median of the increase in landslide-triggering climate events for (b) the near future and (c) the remote future.

The fate of Europe’s roadways

The results of the researchers’ models suggest that the number of landslide-triggering rainfall events will increase from now up until 2100. Their simulations also find while that these hazardous rainfall events slightly increase in frequency between 2021 and 2050, the number of these occurrences will be more significant between 2050 and 2100.  

While the flat, low-altitude areas of central Europe will only experience minor increases in landslide-inducing rainfall activity, regions with high elevation, like uplands and Alpine forests, are most at risk, their findings suggest.

The study found that many locations along the north side of the Alps in France, Germany, Austria and the Czech Republic may face up to seven additional landslide-triggering rainfall events as our climate changes. This includes the Vosges, the Black Forest, the Swabian Jura, the Bergisches Land, the Jura Mountains, the Northern Limestone Alps foothills, the Bohemian Forest, and the Austrian and Bavarian Alpine forestlands.

The researchers go on to explain that much of the Trans-European Transport Networks’ main corridors will be more exposed to landslide-inducing rainfall activity, especially the Rhine-Danube, the Scandinavian-Mediterranean, the Rhine-Alpine, the North Sea-Mediterranean, and the North Sea-Baltic corridors.

The scientists involved with the study hope that their findings will help European policy makers make informed plans and strategies when developing and maintaining the continents’ infrastructure.  

May GeoRoundUp: the best of the Earth sciences from around the web

May GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

This month the Earth science media has directed its attention towards a pacific island with a particularly volcanic condition. The Kilauea Volcano, an active shield volcano on the southeast corner of the Island of Hawai‘i, erupted on 3 May 2018, following a magnitude 5.0 earthquake that struck the region earlier that day.

Since the eruption, more than two dozen volcanic fissures have emerged, pouring rivers of lava onto the Earth’s surface and spurting fountains of red-hot molten more than 70 metres into the air.  As of today, Kilauea’s eruption has covered about 3534 acres (14.3 square kilometres) of the island in lava, according to the U.S. Geological Survey’s most recent estimates.

The island’s volcanic event has dealt heavy damages to the local community, forcing thousands of locals to evacuate the affected area. On 4 May, the governor of Hawaii, David Ige, declared a local state of emergency, activating military reservists from the National Guard to help with evacuations. Over the month Kilauea’s eruption has engulfed nearby neighborhoods in an oozing layer of lava, overtaking 75 homes, blocking major roads, swallowing up many vehicles, and even briefly threatening a geothermal power plant.

Kilauea’s molten rock, with temperatures at about 1,170 degrees Celsius, is an obvious danger to the local Hawaiian community (one serious injury reported so far). However, the volcanic eruption presents many airborne hazards as well.

In addition to spewing out lava, the Kilauea eruption has projected ballistic blocks, some up to 60 centimeters across, and released clouds of volcanic ash and vog (a volcanic smog of sulfur dioxide and aerosols). The ashfall and gas emissions can create hazardous conditions for travel, produce acid rain as well as cause irritation, headache and respiratory issues.

Kilauea’s lava has steadily marched towards the coast of the Big Island, and recently reached the Pacific Ocean. This interaction of molten rock and ocean water has created plumes of laze (lava haze). Laze is essentially a cloud of acidic steam, mixed with hydrochloric acid and fine particles of volcanic glass. Coming into contact with the toxic vapour can result in eye and skin irritation as well as lung damage.  

Map as of 2:00 p.m. HST, May 31, 2018. Given the dynamic nature of Kīlauea’s lower East Rift Zone eruption, with changing vent locations, fissures starting and stopping, and varying rates of lava effusion, map details shown here are accurate as of the date/time noted. Shaded purple areas indicate lava flows erupted in 1840, 1955, 1960, and 2014-2015. (Image: U.S. Geological Survey)

While residents have been fleeing the the Kilauea-affected region, many scientists have rushed to the Big Island to study the eruption. A swarm of researchers have spent the month recording lava flow activity, measuring seismicity and deformation, monitoring ash plumes by aircraft, and taking samples on foot.

Many volcano scientists have also turned to social media to answer questions from the general public about the recent eruption (like why is the eruption pink? Can you roast a marshmallow with lava?) and bust volcano myths floating online (expect no mega-tsunami from this eruption). The EGU’s own early career scientist representative for the Geochemistry, Mineralogy, Petrology & Volcanology Division, Evgenia Ilyinskaya, was invited to explain some volcano lingo on BBC News.

The volcano’s eruption has been ongoing for weeks, with no immediate end in site. Lava flows are still advancing across the region and volcanic gas emissions remain very high, says the U.S. Geological Survey’s Hawaiian Volcano Observatory. You can stay up to date with the volcano’s latest activity on the agency’s site.  

What you might have missed

A team of scientists from the PolarGAP project have found mountain ranges and three massive canyons underneath Antarctica’s ice using radar technology. These valleys play an important role in channeling ice flow from the centre of the continent towards the ocean, according to the researchers. “If Antarctica thins in a warming climate, as scientists suspect it will, then these channels could accelerate mass towards the ocean, further raising sea-levels,” reports an article from BBC News.

Also in Antarctic news, the Natural Environment Research Council (UK) and the National Science Foundation (US) have announced an ambitious plan to determine the Thwaites Glacier’s risk of collapse. The rapidly melting glacier sheds off 50 billion tons of ice a year, and if Thwaites were to completely go under, the meltwater would contribute more than 80 cm to sea level rise. “Because Thwaites drains the very center of the larger ice sheet system, if it loses enough volume, it could destabilize the rest of the entire West Antarctic Ice Sheet,” according to an article in Scientific American. The research team plans to collect various kinds of data on the glacier and use this information to predict the fate of Thwaites and West Antarctica. The $25-million (USD) joint effort will involve about 100 scientists on eight projects over the course of five years, posing to be one of the largest Antarctic research endeavors undertaken.

Meanwhile, looking out hundreds of millions of kilometres away, scientists have made an interesting discovery about one of Jupiter’s potentially habitable moons.

A team of scientists uncovered a new source of evidence that suggests Europa, one of Jupiter’s moons, may be venting plumes of water vapour above its icy exterior shell. The researchers came across this finding while re-examining data collected by NASA’s Galileo spacecraft, which performed a flyby 200 kilometres above the Europa in 1997. While running the decades old data through today’s more sophisticated computer systems, the research team found a brief, localised bend in the magnetic field, a phenomenon that is now recognised as evidence of water plume presence. These new results have made some scientists more confident that NASA’s Europa Clipper mission, set to launch by 2022, will find plumes on Jupiter’s moon.

Links we liked

The EGU Story

A 2007 paper on global climate zones published in Hydrology and Earth System Sciences, a journal of the European Geosciences Union, has been named the most cited source on Wikipedia, referenced more than 2.8 million times. The Guardian and WIRED reported this story that neither Copernicus Publications nor the Australian authors of the paper were aware of.

EGU training schools offer early career scientists specialist training opportunities they do not normally have access to in their home institutions. Up until 15 August 2018, the Union now welcomes requests for EGU support of training schools in the Earth, planetary or space sciences scheduled for 2019.

In addition, the EGU will now accept proposals for conferences on solar system and planetary processes, as well as on biochemical processes in the Earth system, in line with two new EGU conference series named in honour of two female scientists. The Angioletta Corradini and Mary Anning conferences are to be held every two years with their first editions in 2019 or 2020. The deadline to submit proposals is also 15 August 2018.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.