First evidence of microplastics on mountain glaciers

First evidence of microplastics on mountain glaciers

We tend to think of glaciers as spotless pristine settings. But “if plastic is everywhere, why not on the surface of glaciers?” This occurred to Roberto Sergio Azzoni, a professor of environmental science and policy at the University of Milan in Italy, who decided to find the answer to this question for himself. At the European Geosciences Union General Assembly in Vienna, Azzoni and his team presented the first evidence ever of microplastic contamination on alpine glaciers.

The study was conducted on Forni Glacier, one of the largest valley glaciers in the Italian Alps. The beautiful ice sculpted valley, home to World War I historical sites and a  popular hiking route, attracts hundreds of trekkers and alpinists every year. Assuming on-site human activity could be a source of pollution, the team decided to collect the first sediment samples there.

It turns out they were right: the results showed that the samples contained on average about 75 particles of microplastic per kilogram of sediment. This level of contamination is comparable to what is observed in marine and coastal areas in Europe. Extrapolation of this data suggests that there may be between 131 and 162 million plastic particles present on the surface of Forni Glacier, fibers and fragments combined.

The precise origin of the particles is hard to define. Likely, some of the pollution had been carried by air masses from densely urbanized areas surrounding the Alps. However, researchers think most of the plastic has a local origin, since the most common polymer found in the samples was polyester, a component used in technical clothing and equipment for hikers.

For that very reason, in order to avoid contaminating the supraglacial sediment samples during the field campaign, research participants wore only 100% cotton clothes and wooden clogs, a challenging outfit for hiking a glacier.

In order to avoid contaminating the supraglacial sediment samples researchers had to wear 100% cotton clothes and wooden clogs. (Credit: Roberto Sergio Azzoni)

Now, the team plans a follow-up study that will classify the plastic particles more precisely and help determine the origin of the pollutants.

This current study also opens the door to new research on how microplastic contaminants on the surface of alpine glaciers disperse when the ice melts. Although Forni Glacier does not feed drinking water sources down valley, in other locations fibers and fragments could enter the trophic chain and impact ecosystems.

Azzoni notes that hopefully this preliminary study will increase public interest on the topic and raise awareness of the fragility of glaciers. Human activity is producing long-lasting changes to the Earth’s surface that will affect many generations to come, now we can confirm that mountain glaciers are not an exception.

By Maria Rubal Thomsen, EGU Press Assistant

Geosciences Column: Scientists pinpoint where seawater could be leaking into Antarctic ice shelves

Geosciences Column: Scientists pinpoint where seawater could be leaking into Antarctic ice shelves

Over the last few decades, Antarctic ice shelves have been disintegrating at a rapid rate, likely due to warming atmospheric and ocean temperatures, according to scientists. New research reveals that one type of threat to ice shelf stability might be more widespread that previously thought.

A study recently published in EGU’s open access journal The Cryosphere identified several regions in Antarctica were liquid seawater could be leaking into vulnerable layers of an ice shelf.

Scientists have known for some time now that seawater can seep into an ice shelf’s firn layer, the region of compacted snow that is on its way to becoming ice. This seawater infiltration presents an issue to the ice shelf’s stability, since as the seawater spreads throughout the firn layer, the water can create fractures and help expand crevasses already present in the frozen material. Past research has shown that the presence of liquid brine from seawater within an ice shelf is correlated to increased fracturing and calving.

While ice shelf collapse doesn’t directly contribute to sea level rise, since the ice is already floating, stable ice shelves often push back on land-based ice sheets and glaciers, slowing down ice flow into the ocean. Past research has suggested that once an ice shelf collapses, the rate of ice flow from unsupported glaciers can greatly accelerate.

To better understand Antarctic ice shelves’ risk of collapse, the researchers involved with this new study sought to identify where ice shelf firn layers are vulnerable to seawater infiltration. Using Antarctic geometry data, they mapped out the potential ‘brine zones’ within the continent’s ice shelves. These are regions of the ice shelf where the firn layer is both below the sea level and permeable enough to let seawater percolate through.

The results of their analysis revealed that almost all ice shelves in Antarctica have spots where seawater can potentially leak through their layers, with about 10-40 percent of the continent’s total ice shelf area possibly at risk of infiltration.

Map of potential brine zones areas around Antarctica. Map shows areas where permeable firn lies below sea level (the brine zone), with the threshold for firn permeability defined as 750 kg m−3 (red), 800 kg m−3 (yellow) and 830 kg m−3 (blue) calculated using Bedmap2 surface elevation. Bar charts show the mean percentage area of selected ice shelves covered by the brine zone. (Credit: S. Cook et al. 2018)

The researchers compared their estimated points to a map of previously confirmed brine zones, observed through ice cores or radar surveys. After reviewing these records, they identified only one record of brine presence that hadn’t been highlighted by their developed model.

The study found many areas in Antarctica where seawater infiltration could be possible, but has not been previously observed. The findings suggest that this firn layer vulnerability to seawater might be more widespread than previously believed.

The researchers suggest that the most likely new regions where brine from seawater may be present includes the Abbot Ice Shelf, Nickerson Ice Shelf, Sulzberger Ice Shelf, Rennick Ice Shelf, and slower-moving areas of Shackleton Ice Shelf. The regions all contain large swathes of permeable firn below sea level while also subject to relatively warm air temperatures and low flow speeds, the ideal conditions for maintaining liquid brine.

The study points out that there are still many uncertainties in this research, considering the unknowns still present in the data used for mapping and the factors that may influence seawater infiltration. For example, some areas that have large predicted brine zones have an unusually think layer of firn from heavy snowfall. This is the case for the Edward VIII Bay in eastern Antarctica. “Our results indicate the total ice shelf area where permeable firn lies below sea level, but this does not necessarily imply that the firn contains brine,” the authors of the study noted in their article.

Given their findings, the researchers involved recommend that this potentially widespread influence on ice shelves should be further examined and assessed by future studies.

By Olivia Trani, EGU Communications Officer


Cook, S., Galton-Fenzi, B. K., Ligtenberg, S. R. M. and Coleman, R.: Brief communication: widespread potential for seawater infiltration on Antarctic ice shelves, The Cryosphere, 12(12), 3853–3859, doi:10.5194/tc-12-3853-2018, 2018.

Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J.Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I.Gomis, E. Lonnoy, T.Maycock, M.Tignor, and T. Waterfield (eds.)]. In Press

Scambos, T. A.: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophysical Research Letters, 31(18), doi:10.1029/2004gl020670, 2004.

Scambos, T., Fricker, H. A., Liu, C.-C., Bohlander, J., Fastook, J., Sargent, A., Massom, R. and Wu, A.-M.: Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups, Earth and Planetary Science Letters, 280(1–4), 51–60, doi:10.1016/j.epsl.2008.12.027, 2009.

State of the Cryosphere: Ice Shelves. National Snow & Ice Data Center