EGU Blogs

skulls

Theropod skulls: a note of caution

Morphometrics is a horrible word, but refers to a technique that is gaining increased traction in palaeontology in recent years. It essentially is a way of measuring anatomy, or specific aspects of anatomy. An extension of it is called geometric morphometrics, and this relies on using co-ordinate points on fossils to analyse things like shape variation.

The newly minted Dr Christian Foth had a study out earlier this year that did a kind of meta-analysis of morphometrics, using theropod skulls (the group including dinosaurs like T. rex and Troodon, as well as modern birds) as an example. A lot of research has gone into using morphometrics to look at patterns in theropod skull variation through time, as looking at these evolutionary patterns is not only awesome, but can also tell us about their ascent to success through time.

[Read More]

Three-dimensions of palaeontological awesomeness

Scientific publishing is entering a new era, with digital content becoming more and more important in a world where data is openly and freely shared. In palaeontology, we’re not being left behind. Along with this shift, 3D fossils are adding a new breadth to the field, both in a scientific and educational context. A great example is the British Geological Survey’s immense 3D fossil project.

I thought it might be a nice idea to draw attention to a new article by Stephan Lautenschlager of the University of Bristol, discussing the role that 3D palaeontology has to play in the current publishing world, as well as ways of implementing it. He’s been cool enough to make the article open access (see link at the bottom), so I’d recommend heading over to check it out.

[Read More]

A double-whammy of dinosaur awesomeness. Pun totally intended.

This is a post about pachycephalosaurs. It’s not a post about feathered dinosaurs, huge dinosaurs, or any of the ones which you may be more familiar with from popular media. Pachycephalosaurs were the dome-headed little scrappers of the Cretaceous, around 85 to 66 million years ago. Their name means ‘thick-skulled lizard’ (pachy: thick, cephalon: skull, saurus: lizard), and they were a small group within the larger herbivorous group of dinosaurs called ornithischians.

It’s probably fair to say that these dinosaurs are one of the least popular groups; they didn’t have razor sharp teeth and sickle-switchblade claws, they didn’t grow to the size of houses, and they didn’t have rows of armoured shields and spikes along their backs. What they did have, however, is an unusual behaviour that signifies them as unique, and pretty amazing, beasties.

Fig.1 – A pachycephalosaur suffering an ‘ouchie’, or cranial lesion (PLoS)

Fig.1 – A pachycephalosaur suffering an ‘ouchie’, or cranial lesion (PLoS)

[Read More]

Peering into dinosaur skulls – the best application for medical technology

Most of what we know about dinosaurs comes from their skeletal remains. Rarely, we get tiny glimpses into their soft tissue anatomy through skin impressions and even rarer, preserved tissue fragments, mummified over time, and their ecology and life habits through combining interpretation of this from what we can glean from trace fossils (footprints, poop, etc.). Palaeontologists are also taking the first steps to digitally reconstructing their muscular systems through looking at muscle attachment points on bones and comparing this with their living archosaur relatives, crocodiles and birds. But what if we could actually peer inside their skulls to look at their brains? Brains, unsurprisingly, are not preserved in the fossil record. This is due to two, equally scientifically valid points – brains are nutritious, and when a dinosaur dies, their brains are usually scavenged by other carnivores so that they can assimilate the brain-host’s knowledge (and their hearts, for courage)*, and secondly, soft tissue does not readily preserve under normal taphonomic conditions, and only exceptionally rarely under the right conditions, which are typically deep marine anoxic environments (not something any known dinosaur is yet known to have inhabited).

[Read More]