EGU Blogs

Smoke

Fires in South East Asia

Smoke from a number of agricultural fires is currently blanketing Thailand and Cambodia. This is shown below in the satellite image from the MODIS instrument on the TERRA satellite. The red dots are classed as ‘thermal anomalies’ by the satellite instrument and are usually indicative of fires burning in these locations.

The majority of the fires are occurring in grass and cropland areas, which are the bale brown portions of the land surface in the image. This is indicative of agricultural burning, where farmers clear land and use the fires to recycle nutrients ahead of the growing season. In South-East Asia, the fire season usually runs from January to April/May.

Image of fires in South East Asia and the associated smoke haze from 24th February 2014 from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the TERRA satellite. Image courtesy of the NASA Earth Observatory. Click on the image for a larger view.

While the burning is beneficial to farmers, it isn’t too good for air quality in the region. The smoke generated by the fires has built up over Cambodia and Thailand (contrast the clearness of the image in the top-left over Myanmar with the haze to the east). The MODIS instrument on the satellite can also measure the amount of pollution in the atmosphere. This is known as the aerosol optical depth, which is well above 0.5 across the region. For context, a fairly polluted day in North-Western Europe might seen an aerosol optical depth of around 0.2.

This build up of pollution is harmful to health and can also cool or warm the atmosphere depending on the properties of the smoke. The side affects of such changes are uncertain but they could for instance alter atmospheric circulation patterns and rainfall.

Fires are a frequent occurrence across the globe and their impact can have long lasting consequences on our health and climate.

AGU 2013 roundup

Now that the 2013 AGU Fall Meeting has ended, I thought I would roundup what I’ve been involved with over the week for both this blog and the Barometer Podcast, which I was recording each day with Sam Illingworth. Links to each piece are available below. Many thanks to all who have read and shared these over the past week.

Recording the podcast at conferences is becoming a trend as we’ve covered AGU now in 2012 and 2013 plus the EGU in 2013. Recording these is a lot of fun and particular thanks should go to Dave ToppingBethan Davies and Mark Brandon for giving up their time to chat to us this week. Lastly, many thanks to Sam for his infectious enthusiasm and for being the only person I’ve ever met with a louder laugh than me.

The conference itself was excellent throughout, even if the amount of science on offer was overwhelming at times. The sessions on science communication I attended were also fantastic, thought-provoking and often inspiring. I’m planning to write a separate post on this aspect over the coming days.

So long San Francisco! Image: Will Morgan

So long AGU 2013 and thanks for all the science! Image: Will Morgan

Blog posts

Podcasts

http://thebarometer.podbean.com/2013/12/10/fires-beer-and-satellites-day-1-at-agu/

http://thebarometer.podbean.com/2013/12/10/disappointment-aerosols-and-methane-burps-day-2-at-agu/

http://thebarometer.podbean.com/2013/12/12/hansen-nuclear-power-and-geologists-day-3-at-agu/

http://thebarometer.podbean.com/2013/12/13/science-communication-viscosity-and-londons-greenhouse-gases-day-4-at-agu/

http://thebarometer.podbean.com/2013/12/13/communicating-big-data-and-a-love-of-models-day-5-at-agu/

AGU 2013 day 1: Short-lived climate forcers

My first day at AGU 2013 revolved around sessions on short-live climate forcers, which are components in the atmosphere that have short lifetimes (compared to carbon dioxide for example) and generally warm the atmosphere. Reduction of these compounds, such as methane and black carbon, has been mooted as a way to reduce global mean temperatures in coming decades.

This is summarised in the figure below, where the modelled impact of reducing black carbon and methane alongside reductions in carbon dioxide emissions are shown. The majority of the benefit in reducing methane and black carbon is felt by 2040 – if you look at longer time scales, then the effect diminishes relative to carbon dioxide.

image

Modelled impact of various reductions in carbon dioxide, methane and black carbon (BC) on global mean temperature. Figure courtesy of UNEP Integrated Assessment of Black Carbon and Tropospheric Ozone.

The problem with this idea is that there is much uncertainty related to these short-lived components, so it isn’t clear how much global temperatures would respond to a reduction in their atmospheric concentrations. This is represented in the above figure by the vertical bars to the left of the graph – there is much overlap here, which reflects this uncertainty. The health benefits of reducing black carbon in particular are quite clear though. Most of the talks focussed on black carbon and that is what I am also going to focus on below.

Fuzzy metrics

Tami Bond made some excellent and thought-provoking points on how short-lived climate forcers are framed relative to carbon dioxide. The key property for black carbon in the framework of near-term reductions in global temperature is its short lifetime in the atmosphere (days-to-weeks). This means that it is not evenly distributed across the globe, unlike greenhouse gases such as carbon dioxide and methane. This results in its radiative forcing being spatially distinct – the perturbation it has on our planets energy balance occurs close to its source of emission. The impact of such changes is usually felt more at the regional level, rather than the global scale associated with carbon dioxide. Her main point was that this is then an apples-to-oranges comparison, so for example, reducing black carbon emissions in Asia might not have a great impact of global mean surface temperatures but it may well reduce temperatures in the region and slow the effects of carbon dioxide driven warming.

She also reiterated the difficulties associated with the pollutants that are co-emitted with black carbon, which complicate the picture and are one of the major reasons that there is substantial uncertainty surrounding reducing black carbon. In the real world, you can’t really just reduce black carbon – any technological  solution will likely perturb the other pollutants, which tend to cool our climate. Attempts to reduce black carbon might actually result in temperatures rising – I’ve written more on studies that have considered this here.

Other highlights

Yi Deng presented a fascinating study of how aerosol particles can influence the atmosphere far away from their actual location by modelling the impact of biomass burning in Southern Africa on the Asian Summer Monsoon. He showed that the substantial burning that occurs actually strengthens the monsoon by inducing circulation changes up-wind of the Indian sub-continent and south-east Asia. We tend to think of aerosol impacts being confined to their atmospheric location but this illustrated how joined-up our atmosphere is.

One of the issues with black carbon is that some sources have received little attention previously. Ed Fortner from Aerodyne Research Inc. presented measurements of emissions from brick kilns in Mexico, which produce a lot of black carbon. There are around 300,000 kilns worldwide producing 1.5 billion bricks per year! Over half of these are in China (54%), with India (11%), Pakistan (8%) and Mexico (7%)  being the other major kiln hotspots. Characterising the emissions from these and other sources is likely going to be in important for efforts to constrain the impact of black carbon on both our climate and health.

Chris Cappa presented follow-up work to his 2012 paper in Science that investigated how much warming by black carbon is enhanced by other aerosol species that coat it. Black carbon warms the atmosphere by absorbing sunlight and both laboratory and theoretical evidence suggests that this is increased by coatings on the black carbon particles. This coating focusses sunlight onto the black carbon core, like a magnifying glass held to the sun does and this increases the absorption by the black carbon, a phenomenon known as “lensing”. Chris has been busy testing how much enhancement we see in the real world using measurements and typically to enhancement ranges from 10-30%, which is lower than is often suggested by aerosol models. There are significant caveats here as the measurements are challenging and require the aerosols to be “dry” – this is important as water often condenses onto aerosol particles and increases their reflective and lensing ability. This could be a vital ingredient in this process and it is a significant challenge to overcome.

My final highlight was presenting my poster! The AGU poster hall is absolutely massive and must span several football pitches. Despite this, the sessions are hugely rewarding and are a great opportunity to discuss science with a variety of people. The posters are a major part of the AGU fall meeting, which is not always true of other conferences. I’m looking forward to roaming the hall now that my own poster is done.

Me presenting my poster on day 1 of AGU 2013. Image courtesy of Sam Illingworth.

Me presenting my poster on day 1 of AGU 2013. Image courtesy of Sam Illingworth.

Communicating uncertainty

With all this complexity revolving around black carbon and the interest it has received from policy makers, Tami Bond was asked how to communicate this to non-scientists. Her response was:

Keep it simple but don’t ignore physical reality.

That seems like a pretty good mantra to me.

A continent on fire

While preparing my poster for the upcoming AGU Fall Meeting, I downloaded some data on fire activity in South America for background on why we are interested in biomass burning in the region. I wanted to quickly check I had the data in the correct format, so I just plotted the coordinates of the fire counts without an outline of South America.

I was surprised to see that the fire locations for August-October 2012 did a great job of outlining South America on their own!

Fire map.

Map of fire locations during August-October 2012 in South America from MODIS data from the Terra and Aqua satellites provided by NASA’s Earth Observing System Data and Information System (EOSDIS).

The data is from the MODIS instrument on NASA’s Terra and Aqua satellites. The data reports fire locations based on measuring  the emission of infrared radiation by the land surface from space (like the infrared cameras on your favourite police chase tv show).  Any 1km pixel with a fire detected within it is then included in the data – there could be more than one fire within the pixel but the instrument can’t distinguish these. You can find out more information about the technique here.

The widespread nature of the burning across South America is striking. Huge areas of the continent have fires detected within them. This is an annual endeavour with many of the fires started by people for land use change and agriculture. The main “season” runs from August to October, with the peak usually in September. These fires have been occurring for several decades now and they have transformed vast swathes of South America.

The burning produces large amounts of smoke, which can build up and pollute our atmosphere. This has important consequences for regional and global climate, air quality and also ecosystem development. I’m part of a project called SAMBBA, which as well as being a great acronym, is attempting to address some of the aspects of biomass burning that we don’t understand (which is a long list). I’ve written about the project and my part in it here and here previously.

As the map above illustrates, it is quite a big deal in the region. Stay tuned for future updates on the project.