Geology for Global Development

Disaster Risk Reduction

Demonstrating the Importance of Geoscience in the Transformation Towards Sustainable and Resilient Societies

Next week the UN Annual Forum on Science, Technology and Innovation for the Sustainable Development Goals (SDGs) will discuss the science required for “transformation towards sustainable and resilient societies”. Discussions will focus on SDGs 6 (water and sanitation), 7 (energy), 11 (sustainable cities), 12 (responsible consumption and production) and 15 (life on land).  

This forum will bring together member states, civil society, the private sector, the scientific community, and United Nations entities. It aims to facilitate interactions, networks and partnerships to identify and examine needs and gaps in technologies, scientific cooperation, innovation and capacity-building to support the SDGs. We believe it is critical that the global geoscience community is represented, and will therefore attend and ensure a clear voice for geoscience at the heart of global development decision-making.

The natural environment is a key pillar of sustainable development. Research, innovation and improved communication and use of geological science (or ‘geoscience’) is therefore essential to delivering sustainable and resilient societies. For example,

  • Mapping and Understanding the Sub-Surface. In a sustainable and resilient society, interactions between the surface and sub-surface are understood and integrated into urban planning to ensure that development is safe, hazards are mitigated against, and environmental impact is minimised. Geological maps, geophysical surveys, and the integration of geoscience data to develop ground models can generate an understanding of the sub-surface and support effective urban planning.
  • Resource Management. In a sustainable and resilient society, everyone has sufficient and reliable access to energy, clean water, and the materials required for sustainable, resilient cities. This requires the identification and careful management of natural resources, including water, minerals, and building aggregates. The transition to renewable energies, such as solar panels and wind turbines, and electric transport will require a wide range of minerals, such as cadmium, lithium, molybdenum, selenium, and tellurium, as well as rare earth elements.
  • Waste Management. In a sustainable and resilient society, less pollutants are generated, and those that are generated are better managed to reduce the environmental impact of society. Pollutants can take many forms, and these can impact both the surface and sub-surface. For example, while mining may be necessary to supply the materials needed for green technologies, this can generate large amounts of waste which needs to be managed carefully to avoid chemicals leaching into groundwater.
  • Reducing Disaster Risk. In a sustainable and resilient society, the focus is on reducing risk (and preventing disasters), rather than accepting or increasing risk (and responding to disasters). Resilient communities, water supplies, energy infrastructure, and terrestrial ecosystems require effective disaster risk reduction. Research on the processes and potential impacts of earthquakes, volcanic eruptions, tsunamis, landslides, subsidence, and other geological hazards can help stakeholders to understand and reduce risk.

Sustainable and resilient societies, therefore, depend on access to geoscience information and the expertise to interpret this, as well as meaningful engagement by the geoscience community. The networks and partnerships being developed at the UN next week, to identify how scientific cooperation and innovation can support the SDGs, need to include geoscientists working across a broad array of specialisms.

Since the SDGs were agreed in 2015, we have been at the forefront of mobilising and equipping the geological science community to engage and help deliver this vision. We are proud to continue our international leadership on this topic, and will be a champion of the geosciences next week at the UN Headquarters.

Follow updates on Twitter – #GfGDatUNHQ

Read more about this event: https://sustainabledevelopment.un.org/content/documents/18157Forum_Concept_Note_April_26_draft.pdf

Read more about Geology and the Sustainable Development Goals: http://www.episodes.org/view/1835

Climate migration needs to be predicted and planned now. Geoengineering can slow down sea level rise but could also lead to international conflicts. CO2 as a natural resource. All in Jesse Zondervan’s Mar 8 – Apr 4 2018

Climate migration needs to be predicted and planned now. Geoengineering can slow down sea level rise but could also lead to international conflicts. CO2 as a natural resource. All in Jesse Zondervan’s Mar 8  – Apr 4 2018

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

Imagine 140 million people across sub-Saharan Africa, south Asia and Latin America migrating in response to climate change effect, by 2050. This is what a recent World Bank report claims, by projecting current internal migration patterns due to effects, like coastal land loss and crop failure, into the future using climate models.

Climate migration will tend to be mostly internal to countries and can foster inequality as well as economic loss. Since it’s inevitable, we will need to plan for it.

We cannot prevent climate migration, but geoengineering will be a very powerful way to combat unnecessary increases in damage from climate change. With this power comes responsibility through. What will happen if one country decides to spray aerosols to decrease temperature, and inadvertently changes things for the worse for another region?

So yes, we need laws on geoengineering to prevent battles over well-meant geoengineering failures. Interestingly, I found a lot of research articles with new geoengineering proposals, so it’s really coming soon, and we need to think about regulation now.

Geoengineering can be costly. Pumping carbon dioxide from the atmosphere may prevent crop failures due to elevated temperatures, but it is still expensive. But what if we could use CO2 as a natural resource? A team of US and Canadian scientists say it will be possible to use captured CO2 for feedstock, biofuels, pharmaceuticals, or renewable fuels.

This month you will find an article under the section ‘career’, which you should have a look at if you’re doing or thinking of doing a PhD and you want to consider working outside academia. You will find a lot of articles under the usual headings too, so go ahead!

Geoengineering

Once we can capture CO2 emissions, here’s what we could do with it at ScienceDaily by Sarah Fecht at State of the Planet

Preventing hurricanes using air bubbles at ScienceDaily

Geoengineering polar glaciers to slow sea-level rise at ScienceDaily

Mekong River dams could disrupt lives, environment at ScienceDaily

Climate Migration

Wave of Climate Migration Looms, but It “Doesn’t Have to Be a Crisis” by Andrea Thompson at Scientific American

Addressing Climate Migration Within Borders Helps Countries Plan, Mitigate Effects by Alex de Sherbinin at State of the Planet

Career
Having an impact as a development economist outside of a research university: Interview with Alix Zwane by David McKenzie at Development Impact

Sustainability

Structuring collaboration between municipalities and academics: testing a model for transdisciplinary sustainability projects at Lund University

To Sustain Peace, UN Should Embrace Complexity and Be UN-Heroic by Peter Coleman at State of the Planet

Climate Change Adaptation

The Rise of Cities in the Battle Against Climate Change by Allison Bridges at State of the Planet

A City’s Challenge of Dealing with Sea Level Rise at AGU’s Eos

The absence of ants: Entomologist confirms first Saharan farming 10,000 years ago at ScienceDaily

Turning cities into sponges: how Chinese ancient wisdom is taking on climate change by Brigid Delaney at The Guardian

Risk of sea-level rise: high stakes for East Asia & Pacific region countries by Susmita Dasgupta at East Asia & Pacific on the Rise

National Flood Insurance Is Underwater Because of Outdated Science by Jen Schwartz at Scientific American

Disaster Risk

Mobile phones and AI vie to update early disaster warning systems by Nick Fildes at The Financial Times

7 years after tsunami, Japanese live uneasily with seawalls by Megumi Lim at Japan Today

Volcanic risk

GeoTalk: How will large Icelandic eruptions affect us and our environment? By Olivia Trani at EGU’s GeoLog

Earthquake risk

The Wicked Problem of Earthquake Hazard in Developing Countries at AGU’s Eos

External Opportunities

Summer 2018 Internship Opportunities at the Earth Institute

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev& Facebook.

How deep-seated is bias against scientists in the Global South? Can we attribute individual disasters to climate change? Find out in Jesse Zondervan’s Dec 20  – Jan 24 2018 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last four weeks:

If we want to solve the world’s problems, we need all the world’s scientists. Social Entrepreneur Nina Dudnik speaks out against prejudice towards scientists in the developing world. In her article, The Science Community’s “S**thole Countries” Problem, she will challenge many scientists’ own deep-seated bias.

Encouragingly, South African climate researcher Francois Engelbrecht got in the news recently. He developed a climate model, improving projections and supporting the vulnerable community in decision making.

One thing that I believed impossible, is attributing specific extreme weather events to climate change. Well, now it’s possible due to a breakthrough by climate scientist Myles Allen. Harevy reports on the rapidly expanding area of climate science.

Further in the news this month, is activity at the Mayon volcano in the Philippines, a 20-acre mega-landslide about to go in Washington State and the destruction caused by thawing permafrost in Alaska.

There’s a lot to read this month, so go ahead!

The Global South

The Science Community’s “S**thole Countries” Problem by Nina Dudnik at Scientific American

Homegrown African climate model predicts future rains – and risks by Munyaradzi Makoni at Thomson Reuters Foundation

Credit: Rhoda Baer (Public Domain)

 

Climate Change Adaptation

Scientists Can Now Blame Individual Natural Disasters on Climate Change by Chelsea Harvey at ClimateWire

Researchers explore psychological effects of climate change at ScienceDaily

Australia’s coastal living is at risk from sea level rise, but it’s happened before at The Conversation

Why Thawing Permafrost Matters by Renee Cho at State of the Planet

 

Activity at the Mayon Volcano & Other Volcanic Topics

Authorities waging war vs. fake volcanologists in social media by Aaron Recuenco at Manila Bulletin

Scientists monitor volcanic gases with digital cameras to forecast eruptions by Kimber Price at AGU’s GeoSpace blog

We’re volcano scientists – here are six volcanoes we’ll be watching out for in 2018 at The Comversation

Sustainable Cities

‘The bayou’s alive’: ignoring it could kill Houston by Tom Dart at The Guardian

‘Does Hull have a future?’ City built on a flood plain faces sea rise reckoning by Stephen Walsh at The Guardian

Education/Communication

From Natural Disasters to Other Threats, This Initiative Is Teaching Delhi Kids All About Safety by Rinchen Wangchuk at The Better India

Disaster Risk

Why the Swiss are experts at predicting avalanches by Simon Bradley at swissinfo

Tracing how disaster impacts escalate will improve emergency responses at UCL

Watching a Ridge Slide in Slow Motion, a Town Braces for Disaster by Kirk Johnson at The New York Times

The risk of landslides in Rohingya refugee camps in Bangladesh by Dave Petley at AGU’s The Landslide Blog

Deadly California mudslides show the need for maps and zoning that better reflect landslide risk by David Montgomery at The Conversation

Will Tehran be able to withstand ‘long overdue’ quake? By Zahra Alipour at Al-Monitor

Scientists to map quake-prone Asian region in hope of mitigating disaster by Michael Taylor at Thomson Reuters Foundation

How forests could limit earthquake damage to buildings by Edwin Cartlidge at IOP Physics World

Avalanches and floods, drawing by Johann Jakob Wick, 1586

 

External Opportunities

Get involved in knowledge in action

IRDR Young Scientists Programme: Call for application (3rd Batch)

Apply to join the Pressure Cooker event on Risk Communication at the 2018 Understanding Risk Forum

Vacancies: Two Research Positions on Climate & Development, The German Development Institute (DIE) Bonn

Call for applications for the Research School within the Mistra Geopolitics program

Australian Disaster Resilience Conference 2018

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.

How do you monitor an internationally disruptive volcanic eruption? How can you communicate SDGs in an Earth Science class? Jesse Zondervan’s Nov 13 – Dec 13 2017 #GfGDpicks #SciComm

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news, relevant to the work and interests of  Geology for Global Development . Here’s a round-up of Jesse’s selections for the past four weeks:

Bali’s Mount Angung started erupting ash this month, and a post on the Pacific Disaster Center’s website gives you an insight into the workings of Indonesia’s early warning and decision support system. How do you monitor an internationally disruptive volcanic eruption?

In Japan, eruptions in 2016 were preceded by large earthquakes (MW 7.0). A team of researchers used Japan’s high resolution seismic network to investigate the underground effects of earthquakes and volcanoes. How does an earthquake affect a volcano’s activity?

Next to plenty of disaster risk stories – including the simple question: why can’t we predict earthquakes? -, this month brings you a computer simulation tool to predict flood hazards on coral-reef-lined coasts and some thoughts on how to communicate SDGs in an earth science classroom.

Have a look!

Education/communication

The UN Sustainable Development Goals – what they are, why they exist by Laura Guertin at AGU’s GeoEd Trek blog

GeoTalk: How an EGU Public Engagement Grant contributed to video lessons on earthquake education by Laura Roberts-Artla at the EGU’s GeoTalk blog

Credit: Michael W. Ishak, used under CC BY-SA 4.0 license

Disaster Risk

Disaster Geology: 2017’s Most Deadly Earthquake by Dana Hunter at Scientific American

Can the rubble of history help shape today’s resilient cities? By David Sislen at Sustainable Cities

The underground effects of earthquakes and volcanoes at phys.org

Why Can’t We Predict Earthquakes? By David Bressan at Forbes

Detecting landslide precursors from space by Dave Petley at the AGU Landslide Blog

Ocean Sediments Off Pacific Coast May Feed Tsunami Danger by Kevin Krajick at State of the Planet

Life-saving technology provides alert as Bali’s Mount Agung spews ash, raises alarm at Pacific Disaster Center

Climate Change Adaptation

Scientists counter threat of flooding on coral reef coasts by Olivia Trani at AGU’s GeoSpace blog

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.