It is already May!! Crazy. Everyone in the department is incredibly busy right now trying to get all of those things on their winter to-do list checked off before it is time to head out to the field once again and re-fill the to-do list for next winter with sample prep, analysis and some interpretation. It is also time to start thinking of preparing for the field. Some of you hard rock folk might think it is a bit early to start prepping since all you need is a hammer, some canvas bags, and….what else do you need? However, for the geochemist it is time to start organizing our MESS aka. Mobile Experimental Sampling Supplies. Yes, I did just make that up, but I think you get my drift.
For real though, there are numerous essential items that every aqueous geochemist/hydrogeologist needs to bring or at least consider bringing into the field and since these type of items often get back ordered around this time of year it pays to start thinking about it early. Otherwise, one could find oneself lacking anything from their new pH meter to bottle caps the day before one leaves. Not that either of these things has ever happened to me…..mistakes are part of learning, right?
Key parameters that must be measured in the field are pH, Eh/ORP, temperature, alkalinity and conductivity. There are many other parameters that may be measured in the field, but those five are the most essential as they are subject to change once the sample is collected and therefore any long delay in measuring these can compromise the integrity of the data.
The most essential piece of field equipment is probably the pH meter. It is the one completely indispensable measurement that must be taken sitting beside the sampling site. The other four, are essential as well, but if I could only do one, I’d do pH. The reason I am touting pH measurements so highly is simply because in geochemistry so much depends on pH: speciation/redox, dissolved gases, dissolved aqueous complexes, mineral mobility, alkalinity, etc. The list goes on and on. The reason it is so essential to measure pH in the field is because it can often change once the sample is collected due to temperature changes or CO2 degassing. One key thing that must be done before any pH measurements are taken is calibration. It is very important to calibrate the probe at least once each day in order to make sure of getting the most accurate performance.
The other measurement that goes hand in hand with pH is Eh/ORP (oxidation reduction potential). ORP is a measurement of the oxidation/reduction potential of the water. It measures the electron activity of the water which has a major influence on the specification and solubility of elements and minerals in the water. Eh/ORP measurements are given in volts and often go hand in hand with pH. In fact, many pH probes also measure ORP at the same time so both of these crucial parameters are recorded simultaneously.
Conductivity is another measurement that uses its own probe. Conductivity of a water sample is a measurement of salinity of the water. It is basically a measurement of the ions in solution. Conductivity is not a particularly quantitative measurement in that the numbers that it gives are not super accurate, however, it does provide a very good idea of the relative salinity of different waters. For example a cold freshwater spring might have a very low conductivity whereas a lake after a rainstorm might be very high, due to increased sediment influx from runoff.
Alkalinity is another key field parameter that measures the acid buffering potential of the water sample, which directly corresponds to the concentration of HCO3 in the water, except in rare circumstances, where other species provide the acid buffering capabilities. Alkalinity titrations are a bit of a process, and do take a bit of time, but it is essential to do them ASAP as the loss of CO2 from the water can change the alkalinity. Alkalinity is measured by taking the initial pH and then slowly adding acid using a digital titrator and taking the pH along the way. The keys to this are to know the volume of water being titrated, the volume of acid added and the pH after each acid addition. With those basic numbers the amount of HCO3 can be calculated. The key equipment needed for alkalinity titrations are the pH meter, filtering apparatus, the digital titrator and a flask. By the way, helpful tip: don’t store the acid with the titrator, or make sure the acid is well sealed or else this can happen….and those babies aren’t cheap.
Other field parameters that can be measured depending on the type of work being done are dissolved oxygen (DO), which is a common parameter in groundwater sampling and ion selective electrode measurements (ISE). ISE’s can provide a guide to the concentrations of certain ions in the field such as Cl, NH4, F, etc. Ion selective electrodes are great, but they often have a higher limit of detection that the mass spec back in the lab. They are very useful for groundwater sampling or contaminated water sites, where the concentration of dissolved ions is high.
So that is the basics on the different things we have to measure in the field, but there is a lot more stuff that has to come out in order to make these measurements possible and take the samples…and it is really, really easy to overlook something. For example, you can have a great pH meter and probes and be ready to go, but it won’t be much use if you forget one of the calibration standards back in the lab a few thousand kilometers away.
The key pieces of this list (if it were mine) include a lot of random, but very necessary, items such as: filter papers, syringes, filter cartridges, DIC/DOC septa, pH standards, AA and AAA batteries, digital titrator tips, acid, de-ionized water for rinsing, instruction manuals, rock hammer, ziploc bags, GPS and many other little things.
The list of stuff that must be brought to the field is dependent on the type of sampling that you are trying to do. The most important part of planning to the go the field is to pick the parameters that you would like to sample for and tailor your gear list, sample collection methods and field measurements to make sure the samples are of the highest quality. Follow these words of wisdom: “Determine what you are analyzing for in advance and collect your samples according to the proper protocols for each analyte! An analysis can be only as good as the sample that goes into the ICP-MS” – Nimal De Silva (ICP-MS legend). Basically, what this means is that in order to ensure good results the samples must be collected properly, in the proper containers and stored the right way until they are analyzed. Failing to do so could compromise the quality of the results.
Thanks for reading and I would love to hear if I missed anything or if anyone else has field methods/gear that they use for other types of sampling. Please comment!
Wishing everyone a productive field season.
Matt
p.s. I forgot to mention the most important piece of field equipment in the geologists arsenal: