EGU Blogs

Matt Herod

Matt Herod is a Ph.D Candidate in the Department of Earth Sciences at the University of Ottawa in Ontario, Canada. His research focuses on the geochemistry of iodine and the radioactive isotope iodine-129. His work involves characterizing the cycle and sources of 129I in the Canadian Arctic and applying this to long term radioactive waste disposal and the effect of Fukushima fallout. His project includes field work and lab work at the André E. Lalonde 3MV AMS Laboratory. Matt blogs about any topic in geology that interests him, and attempts to make these topics understandable to everyone. Tweets as @GeoHerod.

Guest Post: Dr. Sam Illingworth – To Boldy Go

Satellites are now so ubiquitous in our lives that there is something of a precedent to take them for granted. A normal daily routine for may people across the world may include watching television (satellite) as you check your twitter account (satellite) and have a look at the weather (satellite), all before you’ve even eaten your breakfast (not a satellite); whilst for those of us in the remote sensing community, whose work consists of analysing data from a large plethora of Earth-observing satellites, it can often seem that our lives are intertwined with those majestic flying machines as they dance their cosmic waltz far above the confines of planet Earth. It is almost staggering to believe that just over 50 years ago there was not a single manmade satellite in space, especially when you take into the consideration the fact that since its conception in 1957 the United States Satellite Surveillance Network (SNN) has chartered some 8,000+ anthropogenic obiters.

Sputnik 1 (souce: www.interestingfacts.org)

After the Second World War, the two global powerhouses of that era, the USA and the USSR, found themselves locked in a conflict of attrition that will come to be known as the Cold War. A war whose victors are judged not by the more conventional markers of land gain or battle tallies, but rather through the accumulation of weaponry and the rapid advancement of technology, of which the race to get into space plays a key and pivotal role. Most people, if asked who they considered to be the winners of the Space Race, would tell you that it was of course the USA, taking one small step for man and one giant leap for capitalism when Neil Alden Armstrong walked across the lunar landscape on July 21st 1969. Ask another group of people from a certain vintage or scientific persuasion, and they would probably tell you that the true winners of the Space Race were the Soviets, seeing as they were the first to actually get something up there with the launch of Sputnik 1 on October 4th 1957.  But for me there can only be one winner, and it is neither Apollo 11 nor Sputnik 1, but instead the much less lauded US satellite: Explorer 1.

The Sputnik satellite may have been the first into space, and the Apollo missions may have bee the first to demonstrate the capability of manned spaceflight, but as an Earth observational scientist it was the Explorer 1 satellite that I find to be the most intriguing, being as it was the first to carry a scientific payload; a set of instrumentation which would be used to make the first great scientific discovery from space.

The achievements of the Russian polymaths in ensuring that the Soviets were the first into space should of course never be overlooked, nor would it be strictly fair to say that the scientific significance of Sputnik 1 disappeared as soon as it had successfully reached the edge of the atmosphere – by measuring the drag on the satellite, scientists were able gain useful information about the density of the upper atmosphere – but I like to think of Sputnik 1 as that valiant guest at a wedding, who wishing to get the party started with suitable aplomb, makes a line straight for the empty dance floor only to find that once there they lack any of the necessary moves to do anything of particular note. Explorer 1 on the other hand can be thought of as the louder, more eccentric cousin of Sputnik 1, strutting up to the dance floor without a tie (incredibly there was no tape recorder installed on Explorer 1, meaning that data could only be analysed in near real time as it was transmitted back down the scientists on the ground) before starting to cut shapes that would make even a computerised lathe turn green with envy.

From left to right: William H. Pickering, director of the Jet Propulsion Laboratory, which designed and built Explorer 1. James A. Van Allen, University of Iowa physicist who directed the design and creation of Explorer’s instruments.
Wernher von Braun, head of the U.S. Army Ballistic Missile Agency team that designed and built the Jupiter-C rocket (Source: Smithsonian National Air and Space Museum).

Explorer 1 was launched on the 31st January 1958, becoming the first of the USA’s forays into the vast unknowns of the surrounding cosmos. The design and build of the scientific payload was Lead by Dr. James Van Allen of the University of Iowa, its purpose being to measure cosmic rays as they made their way from the Supernovae explosions of distant stars within our galaxy and towards the Earth. The instrumentation was effectively a Geiger-Müller counter, set up to count the number of high energy cosmic rays as they passed through the relatively fragile shell of the satellite’s metallic exterior, and it was expected that the instrument would return values of approximately 30 rays per second. However, the scientists noted that at certain points in its orbit the instrumentation was returning values of 0 rays per second. Upon closer inspection of the data (along with the measurements taken by Explorer 3, launched on 26th March 1958, and complete with requisite tape recorder) it turned out that these zero values all seemed to be concentrated around South America, and that they only seemed to be present when the satellite was flying at an altitude of greater than 2000 km; at altitudes less than this the instrument recorded the expected 30 counts per second. The team at Iowa soon deduced that these zero counts weren’t zero counts at all, rather they were errors in the data brought about by the instrumentation being bombarded by a powerful stream of highly energised particles that were beyond its measuring capabilities. Van Allen (and others at the University of Iowa) proposed that the reason for this localised concentration was a doughnut-shaped belt of highly energized particles, trapped in formation as a result of the Earth’s magnetic field. These belts have since been named after their discoverer (and not as I had assumed, much to the amusement of one of my undergraduate lecturers, after US rock-hero Eddie van Halen), becoming the first scientific discovery to be made from space.

The Van Allen belts (source: Wikipedia

It was this monumental achievement that formed a significant contribution towards the potential of satellites to inform on the many wonders of our home planet, and it is for this reason that I put forward the Explorer 1 (and by association the USA – sorry soviet fans) team as the true winners of the Space Race, a worthy recipient of a truly intergalactic (well ok, monogalactic) battle.

 

Sam is a postdoctoral research assistant at the University of Manchester, where he spends most of his time working on the development of an algorithm for the retrieval of trace and greenhouse gas measurements from aircraft measured spectra, an algorithm that he affectionately refers to as MARS (the Manchester Airborne Retrieval Scheme). In his spare time Sam enjoys convincing scientists that they can learn to communicate their research more effectively by embracing theatrical technique in all its many guises.

Thanks for reading!

 

Geology Photo of the Week #31/Science Travels

Sorry for the brief hiatus from blogging. This past week I was in Kenora and Dryden, Ontario getting into some great science outreach with an organization from uOttawa called Science Travels. Science Travels is a science outreach organization that sends science graduate students from the University of Ottawa and Carleton to northern communities to give presentations about a variety of science topics. This was my second Science Travels trip and it was a great one. I was teamed up with a neuroscientist, a chemist and a molecular biologist and together we gave talks on DNA, invasive species, the brain, chemistry, digestion, ecology and of course, geology! Throughout the week we presented 8 times per day and in total to well over 500 students. We were also lucky enough to present at three first nations reserves and it was a great experience to learn about first nations culture and present some science in some more isolated communities. It was a tiring week, but there is nothing better than than the feeling that the four of us may have gotten some kids interested in science or opened the door to a career that may not have been considered before.

Here is a map showing where we were. Kenora is the largest community nearby and has approximately 15,000 residents.

Click for larger image.

 

The photos for this week were kindly donated by my colleague Erin Adlakha from the University of Ottawa. They are some nice zoomed in microphotographs (XPL and PPL) of magnesiofoitite (alkali-deficient dravite) replacing dravite in basement metapelite below the Athabasca Basin.

Magnesiofoitite in XPL (Photo: Erin Adlakha)

Magnesiofoitite in PPL (Photo: Erin Adlakha)

Pretty amazing pics. I am trying to convince Erin to supply me with a few more so stay tuned for some more great photos from the Athabasca Basin.

Cheers,

Matt

Geology Photo of the Week #30

The photo for this week was taken in Quebec near the town of Thetford. These are a really beautiful example of pillow basalts. Pillow basalts form during underwater volcanic eruptions and have the unusual quality of appearing bulbous and rounded. The ones pictured below have had their tops shorn off and are therefore visible in plane view. e.g. You’re looking down at them from above after they have had the tops cut off. As I mentioned above these particular pillows are located in Thetford Mines, which is a mining town (obviously). The principle commodity of Thetford Mines is the extremely dangerous and controversial mineral asbestos.

Here is a fantastic video showing pillow basalts forming today.

Click here to display content from YouTube.
Learn more in YouTube’s privacy policy.

Cheers,

Matt

 

The Great Fracking Debate

Yesterday the “Great Fracking Debate” took place at EGU2013 and I tuned in via webstream for the royal rumble of good vs. evil that was sure to take place. I have to say I was a little disappointed (not really) because the tone of the debate was very respectful and sophisticated. I guess if I want to see a good verbal sparring match I’ll have to head over to Parliament and take in a question period. The panellists speaking were: Tom Leveridge from the Energy and Climate Change Select Committee at House of Commons, UK; Brian Horsfield from the Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Germany; Jesús Carrera from the Department of Geosciences, Institute of Environmental Assessment and Water Research, Spain and Jurrien Westerhof from Greenpeace, Austria.

The discussion ranged from talking about how much the world needs fossil fuels and the hydrogeological implications of contamination all the way to the environmental and energy policy and the political will needed for fracking to become practicable in Europe. Overall the debate was a little light on the science and a bit heavy on the policy for my taste. However, it is obviously critical to discuss the politics of fracking since the science is merely a tool to inform the ultimate political decision and is not itself able to determine what is right or wrong. To that end there was a good bit of discussion on the future energy needs of the UK and Europe and if fracking was a necessary tool in order to provide for the energy needs of future generations. Furthermore, the panelists made some excellent points about the need for basic science in this issue and how by continuing to study the impacts and develop more effective ways to extract shale gas we can open the door to a whole new resource for the world and not just Europe or the US. If you would like to watch the entire debate it is archived here.

Since the science wasn’t really discussed I thought I’d throw out this primer to fracking and how it works. Enjoy!

Why are we fracking?

The first question that we should ask, before discussing what fracking is, is why are are we using hydraulic fracturing and what are its benefits. It’s an undeniable fact that the world is highly dependent on fossil fuels for energy, particularly natural gas and oil. However, our thirst for fossil fuels has led to the depletion of most of the easily accessible reserves around the world. This means that oil and gas companies, in their quest to meet demand, are developing new technologies and exploring new regions that were previously overlooked. One new source of natural gas is in shale. Most oil and natural gas is produced in shales due to their high organic content and subsequent heating during lithification (turn to rock). This heating produces oil and natural gas that slowly migrates from the shale into other rocks where it is trapped in what, until recently, were conventional reserves. Oil and gas recovery in the past focused on looking for places where oil and gas was trapped. However, the depletion of these reserves has forced us to look elsewhere, such as in the source rocks like shale, primarily for natural gas and coalbed methane. In theory this sounds great, similar to the old adage: why get an apple from the basket when you can get one from the tree, but in practice things are a little more difficult. The reason for this is that shale is made of very, very fine mineral grains. The natural gas that we would like to recover is trapped in the tiny pore spaces between these grains making it almost impossible to extract. In order to overcome this, the oil and gas industry has been forced to develop new technologies to enhance recovery. One of the most successful, but controversial, is fracking.

What is Hydraulic Fracturing (Fracking)??

The simplest answer to “what is fracking” is that it is a process in which fluids (more on that later) are injected into a borehole to increase pressure. This results in the rock at the bottom of the borehole fracturing. This allows us to recover resources that are hard to get more efficiently.

 

What is fracking? (Source: EPA Hydraulic Fracturing Study Plan,November 2011 – used with permission)

A good analogy is to think of a common scenario you likely tried as a kid. Imagine you have a juice box and instead of sucking on the straw (which represents the borehole) you blow into it instead. Most often this increase in pressure results in juice spraying out to top of the straw. However, one day you blow particularly hard, so hard that the sides of your juice box spit open and you experience catastrophic juice spillage on your favourite pants (not that this actually happened to me or anything…) However, the point is that this increase in pressure inside your juice box resulted in the sides splitting. Fracking works on the exact same principle. When the fracking liquid is injected into a drill hole the pressure on the surrounding rock goes up substantially  If the pressure continues to rise we can cause the rock to fracture. As I mentioned above the permeability of shale is very low and therefore just drilling the well is not enough to recover the gas efficiently. In order to increase recovery we have to increase the permeability. Artificially creating fractures is the way we do so.

What gets injected?

Unfortunately, only the oil companies know the exact answer to this question. However, we do know that the mixture is mainly water with numerous chemical additives.

 

EPA Hydraulic Fracturing Study Plan, November 2011 – used with permission

Obviously there is a laundry list of chemicals that may be incorporated. It is worth noting that it would certainly not be beneficial to ingest any of these substances or to find them in groundwater. In fact, some of these chemicals can be toxic at ppb levels meaning that even the most minor contamination can have huge consequences. Furthermore, this is by no means a full list. The above chart is merely and example of some the chemicals you might expect to find in a fracking fluid. The fracking fluid that is used for each well is tailored specifically for that rock formation being targeted in order to maximize recovery.

What are the environmental effects?

One of the most controversial issues with fracking is the potential for environmental harm that may result from the practice. Some of these include surficial spills of the fracking fluid at the well site, contaminating groundwater either through subsurface migration of the fluid, infiltration from a spill, leaking around a bad well casing, or even earthquakes from the injection of the fluids. Furthermore, fracking requires large amounts of water and also produces large amounts of waste water. The problem created by getting this much clean water and then disposing of the resulting waste water also has potential for large environmental impacts on water sources such as local groundwater reserves in terms of both depleting and contaminating them.

 

EPA Hydraulic Fracturing Study Plan, November 2011 – used with permission

As of now, the impact of fracking is still being studied and moratoriums on drilling and fracking exist in many states and provinces in the U.S. and Canada. To date there have been numerous studies on the environmental impact of fracking and it is essential that these studies be performed in order to truly gauge the impact fracking could have at a particular site.

That is all for now. I realize that I have not addressed some of the more complex issues surrounding fracking. My intention was not to omit any piece of information, but to provide a basic primer about what fracking is and the issues surrounding it. For more detailed information or information about a particular site I encourage you to do more research. Thanks for reading.

Finally, what are your opinions on fracking? Is it a necessary evil? Or is it evil at all? Do you think we can be trusted to frack responsibly? I would love to hear other peoples thoughts on fracking.

Matt

References:

US Environmental Protection Agency: http://water.epa.gov/type/groundwater/uic/class2/hydraulicfracturing/index.cfm

US Environmental Protection Agency Hydraulic Fracturing Study Plan: http://water.epa.gov/type/groundwater/uic/class2/hydraulicfracturing/upload/hf_study_plan_110211_final_508.pdf

Note: This post was originally published at my pre-EGU blog on November 5, 2011. However, after recently watching the Great Fracking Debate at EGU2013 I thought I might do a re-post.