GeoLog

Soil Sciences

Could beavers be responsible for long-debated deposits?

Could beavers be responsible for long-debated deposits?

Following her presentation at the European Geosciences Union General Assembly in Vienna, I caught up with geomorphologist and environmental detective Annegret Larsen from the University of Lausanne, Switzerland, about beavers, baffling sediments and a case she’s been solving for the past seven years.

Back in 2012 the German geomorphology community was seriously debating the source of buried black soils, a stark black layer of sediment found in floodplain deposits all over Europe. Such dark sediments are usually associated with organic, carbon-rich materials, like peat. But unlike the other dark deposits, these soils are low in organic carbon, leading to a wide spectrum of ideas about their origin.

“They’re almost everywhere, and many people have had big fights about them and where they come from. Fire might have played a role, or human impact, or a rising water table associated with changes in climate,” explains Larsen.

The soils themselves are quite variable. Some deposits are quite muddy, while some trap fragments of long-dead plants. “They look a little like the relic of a swamp, containing grassy vegetation, sticks, leaves and little nuts, and they’re mainly black,” said Larsen. At the University of Lausanne, Switzerland and the University of Manchester, UK, she and her colleagues have been studying the composition and chemistry of black soils in an effort to understand how they formed.

Recently, Larsen has uncovered a possible connection between the black soil deposits and European beaver habitats. She presented her findings at the annual EGU meeting earlier this month.

The accused: a European beaver. Credit: Per Harald Olson via Wikimedia Commons

The idea began to take shape while Larsen was driving within the Spessart region of Switzerland. During her travels, she had found the soil situated in environments where beaver populations had been dwelling for some 25 years.

“There are huge swamps, what we call beaver meadows. And the vegetation communities are just like the ones found in those deposits,” said Larsen.

This discovery led her to develop a field experiment with the aim to determine whether beavers could be responsible for these puzzling black deposits.

“It’s like a big mystery for me. To find out if the black floodplain soil really come from when there was a widespread beaver population, before humans eradicated the beaver, I need to understand what the beaver does nowadays, and that’s how I started the project.”

Larsen thinks the beaver-created landscapes change with age, and she has been keeping a close watch on four sites across Switzerland and Germany, where beaver communities have been established for up to 25 years.

The long-toothed mammals have striking impacts on the landscape, which differ depending on where they build their dam. Upstream architecture results in beaver cascades, a series of closely packed ponds, each separated by a beaver dam. Down river, efforts go into one ‘megadam’ that stretches across a slow, meandering section of the stream and cause it to spill out into a large swampy floodplain.

The cascades, Larsen describes, are pretty dynamic. “Sediment gets trapped behind each dam, then they get strained, breach and break, causing sediment to flush downstream. It’s collected by the next dam and that then overtops and then that breaks” and the process starts all over again.

One of Larsen’s field sites: the Distelbach beaver reach. Credit: Annegret Larsen

Beaver meadows begin as large expanses of water, ponds teeming with semi-aquatic vegetation. Over time, fine sediment gathers in the ponds. As the sediment builds up, the area becomes a swamp – a patchwork of shrubs, trees, running water and tough, grassy plants. “You definitely get an explosion in diversity, but it’s a complete change, the area becomes a wetland,” adds Larsen.

And the wetland contains plants that resemble those found in the buried floodplain soils.

“For me, it’s fascinating to think about how all our streams would have looked with a beaver in there: before humans impacted those streams, before humans eradicated the beaver, and before [humans] settled there. There must have been beavers everywhere. Every stream would have been a beaver stream. And a beaver stream looks totally different [to what we see today].”

With the deposits all over Europe, it isn’t hard to imagine that, in years past, beavers shaped the streams, swamps and landscapes of the continent. It’s feasible that these regions might have been swampy landscapes at one point in history.

So, are the beavers behind the black soils? “I think we’re on a good path to contribute to this discussion. It’s at least as reasonable as fire and climate,” she replies.

Larsen makes a strong case, but the jury, it seems, is still out.

By Sara Mynott, EGU Press Assistant

Imaggeo on Mondays: The best of imaggeo in 2018

Imaggeo on Mondays: The best of imaggeo in 2018

Imaggeo, our open access image repository, is packed with beautiful images showcasing the best of the Earth, space and planetary sciences. Throughout the year we use the photographs submitted to the repository to illustrate our social media and blog posts.

For the past few years we’ve celebrated the end of the year by rounding-up some of the best Imaggeo images. But it’s no easy task to pick which of the featured images are the best! Instead, we turned the job over to you!  We compiled a Facebook album which included all the images we’ve used  as header images across our social media channels and on Imaggeo on Mondays blog post in 2018 an asked you to vote for your favourites.

Today’s blog post rounds-up the best 12 images of Imaggeo in 2018, as chosen by you, our readers.

Of course, these are only a few of the very special images we highlighted in 2018, but take a look at our image repository, Imaggeo, for many other spectacular geo-themed pictures, including the winning images of the 2018 Photo Contest. The competition will be running again this year, so if you’ve got a flair for photography or have managed to capture a unique field work moment, consider uploading your images to Imaggeo and entering the 2019 Photo Competition.

A view of the southern edge of the Ladebakte mountain in the Sarek national park in north Sweden. At this place the rivers Rahpajaka and Sarvesjaka meet to form the biggest river of the Sarek national park, the Rahpaädno. The rivers are fed by glaciers and carry a lot of rock material which lead to a distinct sedimentation and a fascinating river delta for which the Sarek park laying west of the Kungsleden hiking trail is famous.

 

Melt ponds. Credit: Michael Tjernström (distributed via imaggeo.egu.eu)

The February 2018 header image used across our social media channels. The photos features ponds of melted snow on top of sea ice in summer. The photo was taken from the Swedish icebreaker Oden during the “Arctic Summer Cloud Ocean Study” in 2008 as part of the International Polar Year.

 

Karstification in Chabahar Beach, IRAN. Credit: Reza Derakhshani (distributed via imaggeo.egu.eu)

The June 2018 header image used for our social media channels. The photo was taken on the Northern coast of the Oman Sea, where the subduction of Oman’s oceanic plate under the continental plate of Iran is taking place.

 

River in a Charoite Schist. Credit: Bernardo Cesare (distributed via imaggeo.egu.eu)

A polarized light photomicrograph of a thin section of a charoite-bearing schist. Charoite is a rare silicate found only at one location in Yakutia, Russia. For its beautiful and uncommon purple color it is used as a semi-precious stone in jewelry.

Under the microscope charoite-bearing rocks give an overall feeling of movement, with charoite forming fibrous mats that swirl and fold as a result of deformation during metamorphism. It may be difficult to conceive, but these microstructures tell us that solid rocks can flow!

 

Refuge in a cloudscape. Credit: Julien Seguinot (distributed via imaggeo.egu.eu)

The action of glaciers combined with the structure of the rock to form this little platform, probably once a small lake enclosed between a moraine at the mountain side and the ice in the valley.

Now it has become a green haven in the mountain landscape, a perfect place for an alp. In the Alps, stratus clouds opening up on autumn mornings often create gorgeous light display.

 

Antarctic Fur Seal and columnar basalt Credit: Etienne Pauthenet (distributed via imaggeo.egu.eu).

This female fur seal is sitting on hexagonal columns of basalt rock, that can be found in Pointe Suzanne at the extreme East of the Kerguelen Islands, near Antarctica. This photo was the November 2018 header image for our social media channels.

 

Silent swamp predator. Credit: Nikita Churilin (distributed via imaggeo.egu.eu).

A macro shot of a Drosera rotundifolia modified sundew leaf waiting for an insect at swamp Krugloe. This photo was the January 2018 header image and one of the finalists in the 2017 Imaggeo Photo Competition.

 

Once there was a road…the clay wall. Credit: Chiara Arrighi (distributed via imaggeo.egu.eu)

The badlands valley of Civita di Bagnoregio is a hidden natural gem in the province of Viterbo, Italy, just 100 kilometres from Rome. Pictured here is the ‘wall,’ one of the valley’s most peculiar features, where you can even find the wooden structural remains of a trail used for agricultural purposes in the 19th and 20th centuries.

 

New life on ancient rock. Credit: Gerrit de Rooij (distributed via imaggeo.egu.eu).

“After two days of canooing in the rain on lake Juvuln in the westen part of the middle of Sweden, the weather finally improved in the evening, just before we reached the small, unnamed, uninhabited but blueberry-rich island on which this picture was taken. The wind was nearly gone, and the ragged clouds were the remainder of the heavier daytime cloud cover,” said Gerrit de Rooij, who took this photograph and provided some information about the picture, which features some of the oldest rocks in the world but is bursting with new life, in this blog post.

 

Cordillera de la Sal. Credit: Martin Mergili (distributed via imaggeo.egu.eu)

The photograph shows the Valle de la Luna, part of the amazing Cordillera de la Sal mountain range in northern Chile. Rising only 200 metres above the basin of the Salar de Atacama salt flat, the ridges of the Cordillera de la Sal represent a strongly folded sequence of clastic sediments and evapourites (salt can be seen in the left portion of the image), with interspersed volcanic material.

 

Robberg Peninsula – a home of seals. Credit: Elizaveta Kovaleva (distributed via imaggeo.egu.eu).

“This picture is taken from the Robberg Peninsula, one of the most beautiful places, and definitely one of my favorite places in South Africa. The Peninsula forms the Robberg Nature Reserve and is situated close to the Plettenberg Bay on the picturesque Garden Route. “Rob” in Dutch means “seal”, so the name of the Peninsula is translated as “the seal mountain”. This name was given to the landmark by the early Dutch mariners, who observed large colonies of these noisy and restless animals on the rocky cliffs of the Peninsula,” said Elizaveta Kovaleva in this blog post.

 

The great jump of the Tequendama. Credit: Maria Cristina Arenas Bautista (distributed via imaggeo.egu.eu)

Tequendama fall is a natural waterfall of Colombia. This blog post highlights a Colombian myth about the origins of the waterfall, which is tied to a real climate event.

 

If you pre-register for the 2019 General Assembly (Vienna, 07 – 12 April), you can take part in our annual photo competition! From 15 January up until 15 February, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo on Mondays: Life between the arid mountains of Gansu, China

Imaggeo on Mondays: Life between the arid mountains of Gansu, China

Even within Earth’s more arid environments, you can find life!

This featured photo was taken near the Lanzhou Zhongchuan Airport, about 50 km away from Lanzhou city, the capital of Gansu province in Western China. The area lies in a region between the Qinghai-Tibet Plateau and the Loess Plateau, with an elevation ranging from 1,500 m to 2,200 m. The landscape is dominated by a network of ridges and valleys; the Loess Plateau in particular is known for its highly erodible soil.

The region is a typical temperate or semi-arid area receiving just 260-290 mm of precipitation annually with a potential evapotranspiration of about 1660 mm each year, according to the Gaolan and Yongdeng National Meteorological Stations. However, even in these dry conditions, you can still find pockets of agricultural plots nestled between the winding mountain ridges. Farmers in this region commonly rely on an agricultural method called terrace farming, where crops are grown on graduated platforms, resembling wide steps. Often used in dry mountainous environments, the practice not only creates a flat surface for farming, but also reduces soil erosion and efficiently conserves water. The terraced farms in this area are mainly distributed in the valley where lands are irrigated for wheat and maize production.

By Olivia Trani, Communications Officer, and Xiaoming Wang, State Key Laboratory of Cryospheric Science, Chinese Academy of Science, Lanzhou, China

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: How erosion creates natural clay walls

Imaggeo on Mondays: How erosion creates natural clay walls

The badlands valley of Civita di Bagnoregio is a hidden natural gem in the province of Viterbo, Italy, just 100 kilometres from Rome. Pictured here is the ‘wall,’ one of the valley’s most peculiar features, where you can even find the wooden structural remains of a trail used for agricultural purposes in the 19th and 20th centuries.

The photograph was taken by Chiara Arrighi, a post-doc research assistant at the University of Florence (Italy), in May last year after climbing roughly 200 metres from the bottom of the Chiaro creek valley. Trails in this region are not well traced or maintained, so she had to find her own way up among the chestnut woods. Once at the top, the trail becomes narrow and unprotected. “The inhabitants of the area still do not exploit this natural beauty as a tourist attraction,” said Arrighi. “In fact, nobody was on the trail, and the silence [was] unreal.”

Badlands are a typical geological formation, where grains of sand, silt and clay are clumped together with sedimentary rock to form layers, which are then weathered down by wind and water. The terrain is characterised by erosive valleys with steep slopes, without vegetation, separated by thin ridges.

Due to the slope’s steep angle and the clay’s low permeability, little water is able enter the soil. Instead water quickly flows across the surface, removing surface clay and carving into the slopes as it does so.

The morphological evolution of the clay slopes can be very rapid (for example, rock falls can occur quite suddenly after heavy rainfall) and occurs as a result of several physical mechanisms, such as mud flows, solifluction (slow movement of wet soil towards the bottom of the valley) and sliding.

During the evolution of the badlands, peripheral portions of the terrain made up of volcanic deposits (tuff cliffs) rose up from the landscape, bordered by nearly vertical slopes (called scarps). Many towns have been built on these erected hilltops, such as Civita di Bagnoregio.

By Chiara Arrighi and Olivia Trani

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.