GeoLog

Early Career Scientists

Shape the EGU 2019 scientific programme: The call for sessions is open!

Shape the EGU 2019 scientific programme: The call for sessions is open!

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance!

From today, until 6 Sep 2018, you can suggest:

  • Sessions (with conveners and description),
  • Short Courses, or;
  • Modifications to the existing skeleton programme sessions

Plus from now until 18 January 2019, you can propose townhall meetings. It’s important to note that, for this year’s General Assembly, session proposals for Union Symposia and Great Debates are due by 15 August 2018.

Explore the EGU 2019 Programme Groups (PGs) to get a feel for the already proposed sessions and to decide which PG would be the best fit for your session. When proposing a session, it’s strongly encouraged to form convener teams that reflect diversity in countries/institutes, gender and career level. A minimum of two conveners  and a maximum of five conveners per session is generally desirable.

Does your idea for a session fall under the remit of two (or more) PGs? Co-organization is possible and encouraged between groups! Put your session proposal into one PG, and you will be able to choose other PGs that you believe should be approached for co-organization.

EGU introduced the programme group Interdisciplinary Events (IE) in 2016, which has now been renamed to Inter- and Transdisciplinary Sessions (ITS). ITS looks for links between disciplines in a coordinated and coherent effort, trying to create new approaches that would not be possible if handled separately. ITS has four sub-programme groups that highlight new themes each year. If you plan to propose an Inter- and Transdisciplinary Session, please submit your proposal in programme group ITS and indicate relevant other programme groups in the session description or comment box. For ITS sessions we kindly ask to identify another programme group that becomes the scientific leader of the event. Accepted ITS sessions will be part of the session programme of the scientific leader in addition to the ITS programme.

The PG officers are on-hand to answer questions about the appropriateness of a specific session topic, so don’t hesitate to contact them if you have queries! You can also find more information about the call for sessions (and the organisation of the scientific programme in general) on the EGU 2019 website.

The EGU’s 2019 General Assembly, takes place in Vienna from 7 to 12 April, 2018. For more news about the upcoming General Assembly, you can also follow the offical hashtag, #EGU19, on our social media channels.

How to convene a session at the General Assembly… in flow charts!

How to convene a session at the General Assembly… in flow charts!

Convening a session at a conference can seem daunting, especially if you are an early career scientist (ECS) and a first-time convener. At the 2018 General Assembly, Stephanie Zihms, the Union-level ECS representative, discussed the basics of proposing, promoting and handling a session in the short course ‘How to convene a session at EGU’s General Assembly.’

In today’s post she has created some simple flow charts to ensure your convening experience is a success. With the call for sessions for the 2019 EGU General Assembly open until 6 September 2018, now’s the perfect time to put this advice into practice!

Did you know that you can help shape the General Assembly by proposing a session?

Follow the flow charts to find out more:

After the session submission deadline, the Programme Committee will look for duplicate sessions and encourage sessions to merge before the call for abstract opens. Once sessions are open for abstract submission, it is then up to you and your convener team to ensure your session is advertised. Try publicising your session as widely as possible. Why not spread the word through social media, mailing lists or even a blog post?

Remember, scientists who would like to be considered for the Roland Schlich travel support have to submit their abstracts by 1 December 2018, prior to the general deadline, to allow for abstract assessment.

Also remember that ECS can apply to be considered for the OSPP (Outstanding Student Poster and Presentation) award. Judges are normally allocated by the OSPP coordinator, but as a convener you need to check each entry has been awarded judges.


Once the general deadline closes, your responsibilities as convener or co-convener depend on the type of session and the number of abstracts. EGU’s conference organisers, Copernicus Meetings, will keep you updated via email and more information about your responsibilities can be found here.

Note that the EGU considers all General Assembly contributions equally important, independent of presentation format. With this in mind, if your session is given oral blocks, make sure your oral slots include presentations from early career scientists as well as established scientists. It’s also a good idea to ensure your diversity selection goes beyond career stage and includes gender and nationality.

As the convener (or co-convener) you need to ensure all abstracts submitted for the Roland Schlich travel support are evaluated and the feedback is provided through the online tool. This should be done as a team.

The minimum number of submitted abstracts required for a session varies each year. This often depends on the type of session requested (oral, poster, PICO) and overall amount of abstracts submitted.

Not all conveners attract the required number of abstracts for their session of choice, but don’t worry. If this happens to you, there are other options available, like converting to different session type or teaming up another session. The EGU Programme Committee works hard to make sure all abstracts are presented at the General Assembly in sessions that are as suitable to them as possible.

Remember, the call for sessions for the EGU General Assembly 2019 closes on 6 September 2018 and the call for Union Symposia and Great Debates proposals ends by 15 August 2018.

By Stephanie Zihms, the Union-level ECS Representative

The EGU’s 2019 General Assembly, takes place in Vienna from 7 to 12 April, 2019. For more news about the upcoming General Assembly, you can also follow the official hashtag, #EGU19, on our social media channels.

Give us the foundation to build our transferrable skills!

Give us the foundation to build our transferrable skills!

The EGU Early Career Scientists’ (ECS) Great Debates offer early career scientists at the EGU General Assembly the chance to network and voice their opinions on important topics in the format of round-table discussions. At the end of the debate, each table delivers a statement that summarises the discussion and recommendations. By publishing the results, we hope to highlight some of the needs of the EGU ECS community and how these matters should be addressed.

At this year’s ECS Great Debate, the topic was transferrable skills in science. The main question was “should early career scientists use time developing transferrable skills?” You may say this is a simple question to answer. Indeed, all the resulting statements indicated that the EGU ECS answer is YES. However, the simple statements hide a much more complex situation; a situation that varies considerably for each individual researcher. Different countries have different standards, different universities set different curricula, and different supervisors have different priorities. Some early career scientists are lucky to have many opportunities to develop transferrable skills, whereas others strive to gain these skills.

Groups defined transferrable skills as ones that could be used in other scientific disciplines and not least, in industry. Indeed, many scientific skills are transferrable. For example, data analysis and statistics were noted as valuable tools across various scientific fields and industry careers. Some groups gave extensive lists of transferrable expertise, and most were not strictly science-based. These included writing, presenting, social media, teaching, team working, project management, networking and critical thinking, to name a few. However, developing these skills do not traditionally fall into the curricula of the geosciences.

Early career scientists having round-table discussions on the importance of developing transferrable skills. (Credit: Olivia Trani)

It was evident that ECS in the EGU consider transferrable skills as extremely important to their careers and their science. They furthermore suggest that researchers should be given time and appropriate credit to develop these skills.

At the same time, many of the ECS debate participants believe in striking a balance between establishing these skills and the scientific skills that their PhDs and publications depend on.

Below you will find a list of the summary statements from the ECS that were present at the Great Debate. These reports, based on the discussions from more than 100 early career scientists, show solid support for transferrable skill training. These results are a clear indication that EGU must continue to work towards offering short courses at the General Assembly on a variety of transferrable skills. Additionally, these statements can help ECS persuade their universities to invest in opportunities to develop these skills if they do not already do so. It is clear that the EGU early career scientist community believes these skills not only help ECS develop their careers, but that they also benefit science and society!

Here are the table’s conclusions:

“Instead of currently developing random skills ourselves, on an ad-hoc basis, we need an environment to support more organized, collaborative, efficient, and recognized skill sets”

“We need transferrable skills to communicate knowledge and help society, therefore learn them, when you need them or want them, others will thank you”

“We should focus on developing these [transferrable] skills but we need to manage our time in order to go deeper into [our] own science”

“Yes, because whether you decide to stay in academia or in industry, these skills will help you be better in your field, help you work on interdisciplinary topics and communicate your work, thus increasing your success. The pros outweigh the cons!”

“Yes, to be a good scientist, researcher, or general human being, it takes more than one skill or field. It takes being open and brave to pursue new experiences to change both yourself and those around you.”

“Scientific careers are not just about getting specific knowledge in your field specialty but being able to adapt yourself to different disciplines.”

“Yes, because you get more job opportunities, it gives you flexibility, it’s fun, it makes you happy, it helps define you and strengthens your personality.”

“Yes, it is important for improving our possibilities after a PhD. We should take these opportunities as early career scientists [and] have more chances to learn these skills.”

“All scientists should be required to take time to develop useful skills for professional and personal development. These developments should not be exclusive to certain groups, should be obligatory with freedom to choose topics, should be offered to supervisors and managers, should include more courses at conferences and there should be more money for travel funding.”

“We need to find a good balance during PhD between doing science and attending courses about transferrable skills.”

“Yes, but plan which relevant transferrable skills you need to develop in the short term in relation to your project, and then update your long-term plan.”

“Transferrable skills will always be useful in your current and future situation. They should be learnt at university. It should be acceptable to spend time learning these skills in courses in tandem with your research.”

By Mathew Stiller-Reeve, co-founder of ClimateSnack and researcher at Bjerknes Centre for Climate Research, Norway

Editor’s note: This is a guest blog post that expresses the opinion of its author and those who participated at the Great Debate during the General Assembly, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.

GeoTalk: A new view on how ocean currents move

GeoTalk: A new view on how ocean currents move

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Jan Zika, an oceanographer at the University of New South Wales in Sydney, Australia. This year he was recognized for his contributions to ocean dynamics research as the winner of the 2018 Ocean Sciences Division Outstanding Early Career Scientists Award.

First, could you introduce yourself and tell us a little more about your career path so far?

My pleasure. I was actually pretty set on the geosciences as a kid. I think all my projects in my last year of primary school were about natural disasters of some form or another – volcanoes, earthquakes, tsunamis, etc. My teachers must have thought I was going to grow up to be a villain in a James Bond film.

I grew up in Tasmania, where there aren’t exactly natural disasters, but nature was very present in my everyday life and that sustained my interest into adulthood. When I was ready for university, meteorologists, geologists, and other researchers advised me to do the hard stuff first. So in my undergraduate degree I focused on mathematics and physics. I was good at it, but I kind of forgot why I was there at some point.

Things changed for me when I interned at a marine science laboratory in Hobart operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). I’d walked past the building so many times growing up but never thought I’d get to work inside. Bizarrely, I worked on a project related to the Mediterranean Sea. It was just so uplifting being able to put all these skills I had learnt in class, like vector calculus and thermodynamics, into practice.

From then on I was properly hooked on oceanography and the geosciences. I got into a PhD program through the CSIRO, which felt like being drafted to the Premier League. After completing the doctorate, I took a job as a research fellow in Grenoble, France. Not an obvious place to study the ocean I know, but there was a great little team there. After a couple of years, I moved to the UK, first to the University of Southampton then Imperial College London.

After seven years as a research fellow in Europe I returned home to Australia to become, of all things, a mathematics lecturer at the University of New South Wales. My research is still related to oceans and climate, but day-to-day I am teaching maths. At least now when I teach vector calculus I can pepper the lectures with the sorts of applications to the natural world that have inspired me throughout my whole career.

This year you were awarded an Outstanding Early Career Scientists Award in the Ocean Sciences Division at the 2018 General Assembly for you work on understanding the ocean’s thermohaline circulation and its role in Earth’s climate. Could you tell us more about your research in this field and its importance?

I’d love to. In many fields of science just changing the way you look at a problem can have a big effect. Usually this involves drawing different kind of diagrams. These diagrams may seem abstract at first, but eventually they make things easier to understand. Some diagrams we are all familiar with in one way or another, such as the periodic table, Bohr’s model of the atom, and the economists’ cost-benefit curve. These were all, at some stage, new and innovative ways of presenting something fundamentally complex. I am not saying I did anything like make a model for the atom, but I was inspired by the work of 19th century physicists who made simple diagrams to describe thermodynamic systems (like engines and refrigerators, for example). I wanted to apply these types of ideas to the ocean.

Working closely with colleagues in Australia and Sweden, I came up with a way to make a new diagram for the ocean’s thermohaline circulation. This is the circulation that, in part, makes Europe relatively warm, and plays a big role in regulating Earth’s climate. The new diagram we developed helped us to understand the physical processes controlling the thermohaline circulation and opened the door to all sorts of new methods for understanding the ocean’s role in climate.

Jan’s diagram of ocean circulation in temperature-salinity coordinates from a global climate model (Community Earth System Model Version 1). Contours represent volumetric streamfunction in units of Sverdrups (1Sv = 10^6 m^3 s^-1). Credit: Jan Zika

I started to realize I had stumbled onto something really big when I ran the idea by a Canadian colleague Fred Laliberte, who was a researcher at the University of Toronto at the time. He had been working on a very similar problem in the atmosphere, and my diagram was just the thing he needed to work things out. We ended up getting that work published in the journal Science and we were able to say a thing or two about how windy the world might get as the climate changes. To know my ideas were having an impact well beyond my immediate research area really was special.

And what did you find out? How will climate change affect the world’s wind?  

What we found was that overall the earth’s atmosphere won’t get much more energetic (or may even get less energetic) as the climate warms. This means that although extreme storm events may become more frequent in the future, weak storms may become much less frequent (more calm weather). One can draw an analogy with a spluttering engine: it produces bursts of energy when it splutters but is slower and less effective the rest of the time.

Your research pursuits have taken you to some pretty incredible places. What have been some highlights from your time out in the field?

It has been great to balance the mathematics and theory I do with research in the field. As an oceanographer I have been ‘to sea’ a few times. The most memorable was when I was part of a research project to measure in the Southern Ocean. Our research area was between South America and the Antarctic continent. We set off from the Falkland/Malvinas Islands and made our way around the Scotia Sea dropping by South Georgia on our way back. Those Antarctic islands had the most spectacular scenery I have ever seen. The highlight though was when a gigantic humpback whale spent a few hours playing with us and the ship – spinning under water, breaching and popping up to say hello.

Jan (right) with Brian King (left) from the UK National Oceanography Centre. Pictured here on the James Clarke Ross in the South Atlantic deploying an Argo Float. The instrument measures ocean temperature, salinity and pressure. Credit: Jan Zika

As part of the research, we released a small amount of inert substance (a type of chemical that wouldn’t affect marine life) about a kilometre below the surface of the ocean. This is called a ‘tracer.’ The idea was we would let the ocean currents move and stir the substance like milk poured into coffee. It is really important for us to understand how much things mix in the deep ocean as this affects the thermohaline circulation and how heat and carbon are absorbed into the ocean with global warming.

Once we had released the substance it wasn’t that easy to find where it had gone. What we had to do was float around, drop over an instrument that could trap water at different depths, then bring the water samples to the surface and analyse them in a small lab we had on board. The difficult part was the tracer would become really dilute once it had been mixed by ocean currents, and it was both a really time consuming and costly process to collect and analyse the substance. So we had to exploit sophisticated computer models and pool all our knowledge and best guesses on where the tracer might have gone. We did such a good job tracking it that we were able to continue gathering oodles of valuable data for almost twice as long as had originally been planned. This was testament to the excellent teamwork and ingenuity of our collaborators at sea, in the lab and in front of computers.

Outside of research, you have also been involved with a number of science communication initiatives and outreach activities with young students. What advice would you impart to scientists who would like to engage with public audiences?

That is right, I really enjoy inspiring the next generation and getting non-science folk engaged in what we do. I would say that you want to simplify things but don’t dumb them down. I’ve learnt the hard way that even when speaking to other ‘experts’ it is best to use plain language instead of jargon and go slowly through concepts even if you feel they should be basic. I think working with people from around the world (e.g. in France) who don’t have English as a first language, really helped me with this.

Jan teaching a Geophysical Fluid Dynamics class at the University of New South Wales with the aid of a rotating tank experiment. Credit: Susannah Waters

At the same time I am always surprised at how quickly young students can absorb ideas and throw up questions that even an expert wouldn’t have come up with. The great thing is that your students aren’t wedded to dogma like experienced researchers are, and so are capable of much more creative ideas.

The other day I was helping with a special event to encourage females to enter mathematics. I was inspired by a talk given by the Australian Girl’s Maths Olympiad Team who had just competed in Venice. They said solving Maths Olympiad problems was all about breaking down a big problem into smaller problems they already know how to solve. I ended up changing my own talk as I was inspired by this theme.

I guess what I am suggesting is, if you are organising outreach activities, instead of thinking about how to ‘tell them’ how things work, think about ways to get ideas from them. Include them in the process. Ask them the hard questions. That way everyone will be much more involved. And who knows, it might spark a great idea.

Interview by Olivia Trani, EGU Communications Officer