CR
Cryospheric Sciences

Image of the Week

Image of the Week — We’re heading for Vienna

Image of the Week — We’re heading for Vienna
Tatata taaa tatatatata Tatata taaa tatatatatatatata
We’re heading for Vienna (Vienna)
And still we stand tall
‘Cause maybe they’ve seen us (seen us)
And welcome us all, yeah
With so many miles left to go
And things to be found (to be found)
I’m sure that we’ll all miss that so
it’s the … 
…congratulations, you’ve recognise the song…..it is the Final Countdown (slightly adapted!)

With the EGU general assembly starting in two days only, we hope that your presentations are almost ready that you haven’t forgotten to include in your programme all the cool stuff listed in our cryo-guide!

 

However, if you don’t have time to read it all, please make sure you’ve heard of these 3 events :
  1. the pre-icebreaker meet up on Sunday 23rd from 16:00 aida (close to Stefanplatz)
  2. the Cryoblog lunch on Tuesday 25th 12:15 in front of the entrance.
    If you like this blog, are curious about it and would like to contribute to it  — directly and/or indirectly — please come and meet us on Tuesday (for more information please email sberger@ulb.ac.be or emma.smith@awi.de)
  3. the cryo night out on Thursday 27th from 19:30 at Wieden Braü

 

See you in Vienna!

PS: We take no responsibility for anyone who finds they have Final Countdown stuck in their head all week! (♪ Tatata taaa tatatatata Tatata taaa tatatatatatatata ♫)

Edited by Emma Smith

Image of the Week – A high-resolution picture of Greenland’s surface mass balance

Image of the Week – A high-resolution picture of Greenland’s surface mass balance

The Greenland ice sheet – the world’s second largest ice mass – stores about one tenth of the Earth’s freshwater. If totally melted, this would rise global sea level by 7.4 m, affecting low-lying regions worldwide. Since the 1990s, the warmer atmosphere and ocean have increased the melt at the surface of the Greenland ice sheet, accelerating the ice loss through increased runoff of meltwater and iceberg discharge in the ocean.


Simulating the climate with a regional model

To understand the causes of the recent ice loss acceleration in Greenland, we use the Regional Atmospheric Climate Model RACMO2.3 (Noël et al. 2015) that simulates the evolution of the surface mass balance, that is the difference between mass gain from snowfall and mass loss from sublimation, drifting snow erosion and meltwater runoff. Using this data set, we identify three different regions on the ice sheet (Fig. 1):

  • the inland accumulation zone (blue) where Greenland gains mass at the surface as snowfall exceeds sublimation and runoff,

  • the ablation zone (red) at the ice sheet margins which loses mass as meltwater runoff exceeds snowfall.

  • the equilibrium line (white) that separates these two areas.

From 11 km to 1 km : downscaling RACMO2.3

To cover large areas while overcoming time-consuming computations, RACMO2.3 is run at a relatively coarse horizontal resolution of 11 km for the period 1958-2015. At this resolution, the model does not resolve small glaciated bodies (Fig. 2a), such as narrow marginal glaciers (few km wide) and small peripheral ice caps (ice masses detached from the big ice sheet). Yet, these areas contribute significantly to ongoing sea-level rise. To solve this, we developed a downscaling algorithm (Noël et al., 2016) that reprojects the original RACMO2.3 output on a 1 km ice mask and topography derived from the Greenland Ice Mapping Project (GIMP) digital elevation model (Howat et al., 2014). The downscaled product accurately reproduces the large mass loss rates in narrow ablation zones, marginal outlet glaciers, and peripheral ice caps (Fig. 2b).

Fig. 2: Surface mass balance (SMB) of central east Greenland a) modelled by RACMO2.3 at 11 km, b) downscaled to 1 km (1958-2015). The 1 km product (b) resolves the large mass loss rates over marginal outlet glaciers [Credit: Brice Noël].

 

The high-resolution data set has been successfully evaluated using in situ measurements and independent satellite records derived from ICESat/CryoSat-2 (Noël et al., 2016, 2017). Recently, the downscaling method has also been applied to the Canadian Arctic Archipelago, for which a similar product is now also available on request.

Endangered peripheral ice caps

Using the new 1 km data set (Fig. 1), we identified 1997 as a tipping point for the mass balance of Greenland’s peripheral ice caps (Noël et al., 2017). Before 1997, ablation (red) and accumulation zones (blue) were in approximate balance, and the ice caps remained stable (Fig. 3a). After 1997, the accumulation zone retreated to the highest sectors of the ice caps and the mass loss accelerated (Fig. 3b). This mass loss acceleration was already reported by ICESat/CryoSat-2 satellite measurements, but no clear explanation was provided. The 1 km surface mass balance provides a valuable tool to identify the processes that triggered this recent mass loss acceleration.

Fig. 3: Surface mass balance of Hans Tausen ice cap and surrounding small ice bodies in northern Greenland before (a) and after the tipping point in 1997 (b). Since 1997, the accumulation zone (blue) has shrunk and the ablation zone (red) has grown further inland, tripling the pre-1997 mass loss [Credit: Brice Noël].

 

Greenland ice caps are located in relatively dry regions where summer melt (ME) nominally exceeds winter snowfall (PR). To sustain the ice caps, refreezing of meltwater (RF) in the snow is therefore a key process. The snow acts as a “sponge” that buffers a large amount of meltwater which refreezes in winter. The remaining meltwater runs off to the ocean (RU) and contributes to mass loss (Fig. 4a).

Before 1997, the snow in the interior of these ice caps could compensate for additional melt by refreezing more meltwater. In 1997, following decades of increased melt, the snow became saturated with refrozen meltwater, so that any additional summer melt was forced to run off to the ocean (Fig. 4b), tripling the mass loss.

Fig. 4: Surface processes on an ice cap: the ice cap gains mass from precipitation (PR), in the form of rain and snow. a) In healthy conditions (e.g. before 1997), meltwater (ME) is partially refrozen (RF) inside the snow layer and the remainder runs off (RU) to the ocean. The mass of the ice cap is constant when the amount of precipitation equals the amount of meltwater that runs off. b) When the firn layer is saturated with refrozen meltwater, additional meltwater can no longer be refrozen, causing all meltwater to run off to the ocean. In this case, the ice cap loses mass, because the amount of precipitation is smaller than the amount of meltwater that runs off [Credit: Brice Noël].

  In 1997, following decades of increased melt, the snow became saturated with refrozen meltwater, so that any additional summer melt was forced to run off to the ocean, tripling the mass loss.

We call this a “tipping point” as it would take decades to regrow a new, healthy snow layer over these ice caps that could buffer enough summer meltwater again. In a warmer climate, rainfall will increase at the expense of snowfall, further hampering the formation of a new snow cover. In the absence of refreezing, these ice caps will undergo irreversible mass loss.

What about the Greenland ice sheet?

For now, the big Greenland ice sheet is still safe as snow in the extensive inland accumulation zone still buffers most of the summer melt (Fig. 1). At the current rate of mass loss (~300 Gt per year), it would still take 10,000 years to melt the ice sheet completely (van den Broeke et al., 2016). However, the tipping point reached for the peripheral ice caps must be regarded as an alarm-signal for the Greenland ice sheet in the near future, if temperatures continue to increase.

Data availability

The daily, 1 km Surface Mass Balance product (1958-2015) is available on request without conditions for the Greenland ice sheet, the peripheral ice caps and the Canadian Arctic Archipelago.

Further reading

Edited by Sophie Berger


Brice Noël is a PhD Student at IMAU (Institute for Marine and Atmospheric Research at Utrecht University), Netherlands. He simulates the climate of the Arctic region, including the ice masses of Greenland, Svalbard, Iceland and the Canadian Arctic, using the regional climate model RACMO2. His main focus is to identify snow/ice processes affecting the surface mass balance of these ice-covered regions. He tweets as: @BricepyNoel Contact Email: b.p.y.noel@uu.nl

Image of the Week – The ups and downs of sea ice!

Image of the Week – The ups and downs of sea ice!

The reduction in Arctic sea-ice cover has been in the news a lot recently (e.g. here) – as record lows have been observed again and again within the last decade. However, it is also a topic which causes a lot of confusion as so many factors come into play. With this Image of the Week we will give you a brief overview of the ups and downs of sea ice!


In general, Arctic sea ice is at its minimum extent at the end of the summer (September), and its maximum extent at the end of the winter (March). Our Image of the Week (Fig. 1) shows the summer and winter sea ice cover over the last year. In September 2016, the Arctic sea-ice minimum covered the second smallest extent since the beginning of satellite observations (38 years). Only 4.14 million square kilometres of the Northern Hemisphere were covered by sea ice on the day of minimum extent (September 10th). The maximum sea-ice extent was observed on March 7th 2017, only 14.42 million square kilometres of sea ice were observed: the lowest maximum since the beginning of satellite observations.

How long do we have until Arctic summer sea-ice cover is completely gone?

The Arctic Ocean is defined as ice-free, when the sea-ice area does not exceed 1 million km². Due to the close relationship between CO2 emissions and the sea-ice area (see one of our previous posts), it is likely that the summer Arctic sea-ice cover will fall below this threshold during the 21st century. Under the highest emission scenario (RCP 8.5 – IPCC, 2015), an almost ice-free Arctic in September is likely to occur before the middle of the century. It is, however, not easy to predict the exact year of an ice-free Arctic summer as the extent of the ice cover depends on many parameters influencing the freezing and melting of the ice.

On one hand, some parameters and their effect on the sea-ice cover are well understood and their future evolution can be projected quite well through climate models. For example, changes in the sea surface temperature tend to affect the starting date of the freezing period while changes in air temperature tend to affect the starting date of the melting period. As both air temperature and sea surface temperature are projected to increase in the long term, due to climate change, the period where ice can be present will be reduced more and more.

On the other hand, some parameters lead to several concurring effects, which are difficult to separate clearly and not always fully understood. Therefore, their future evolution and influence on sea ice is not totally clear. For example, the sea-ice loss leads to more open ocean areas, which absorb solar radiation, causing warming and therefore leading to faster sea-ice melting – a mechanism called “sea-ice albedo feedback”. At the same time, more open ocean areas also lead to more evaporation and therefore more clouds, which shield the ice from solar radiation and therefore lead to less warming of the ice and ocean surfaces.

Still, even if we knew the effect and long-term evolution of all these parameters, the exact date of ice-free Arctic could not be defined easily in advance. Why? The chaotic nature of the atmosphere leads to very short-term effects that influence the ice cover as well…

Be careful! A record minimum does not always mean a record maximum (and vice versa)!

On shorter time scales, sudden changes in the atmospheric circulation can have a large impact on sea-ice extent. Therefore, it is not guaranteed that a year with a record low maximum will have a record low minimum and vice versa. For example, heat waves and warm air outbreaks or high winds due to the transport of low pressure systems into the Arctic can lead to a more rapid decline of the sea-ice cover. The other way round, if the atmosphere from lower latitudes does not disturb the Arctic region, the sea-ice cover can stabilise again.

What about this year (2016/2017 season)?

Sometimes, it is not clear why sea-ice retreats rapidly. For example, the low 2016 minimum came as a surprise as the cover started with a very low minimum but then did not melt as fast as in previous years, due to average or below average temperatures. Only shortly before the minimum extent, stormy conditions came into play and led to the low extent that was observed (see Fig. 2).

Figure 2: Comparison of Arctic sea-ice extent between different years for summer (left) and winter (right). [Credit: Image courtesy of the National Snow and Ice Data Center]

The reasons for the record low 2017 maximum are better understood. The Arctic Ocean was not covered by much ice to begin. Then, the autumn and winter in the Arctic were very warm with air temperatures from October 2016 to February 2017 being from 2.5 to up to 5 degrees in some regions higher than on average.

From the Arctic to the Antarctic

In the last decades, although it recovered in some years between the record lows, the Arctic sea-ice cover has overall been declining. This is not the case on the other side of the planet, in Antarctica. Note that Antarctica is a complete different setting than the Arctic Ocean. The former being a continent surrounded by ocean and sea ice, the latter being an ocean with sea ice surrounded by continents.

Figure 3: Comparison of Antarctic sea-ice extent between different years for summer (left) and winter (right). [Credit: Image courtesy of the National Snow and Ice Data Center]

In recent decades, Antarctic sea-ice has been increasing very slowly (see Fig.3). Scientists were puzzled as such an evolution was not expected in a global warming framework. Explanations for this behaviour are that this is likely due to changing wind and surface pressure patterns around Antarctica. Contrary to this trend, this year (2016/2017) was a record low maximum and minimum in Antarctic sea-ice cover. This change is puzzling scientists even more. It remains unclear up to now if this is a permanent shift in the tendency of Antarctic sea ice or if this a single event. Be sure that the next months will be full of papers trying to explain this change in behaviour, it is going to be exciting!

Further reading

Edited by Emma Smith

Image of the Week — Microbes munch on iron beneath glaciers

Image of the Week — Microbes munch on iron beneath glaciers

The interface between a glacier and its underlying bedrock is known as the subglacial zone. Here lie subglacial sediments, the product of mechanical crushing of the rock by the glacial ice. Despite their lack of sunlight, nutrients and oxygen, subglacial sediments host active and diverse communities of microorganisms.

What we (don’t) know about subglacial microorganisms

The past few decades have seen major advances in our understanding of these communities, including the role these microbes play in the chemical breakdown of underlying bedrock (chemical weathering reactions). It is now known, for example, that microorganisms in subglacial systems are involved in pyrite oxidation and it certainly seems that bedrock mineralogy influences the composition of these microbial communities.

However, most studies to date have focussed on the biogeochemical cycling of sulfur and nitrogen in these systems. Consequently, the microbial mediation of iron cycling in subglacial systems remains poorly understood, despite the importance of iron in ocean fertilisation and other downstream environments. For instance, phytoplankton in the open ocean are often limited by the amount of iron available, so fluxes of iron to the oceans from glaciers and ice sheets are an important contribution to ocean productivity.

A new study about subglacial iron

In a new paper published in Biogeosciences, we investigate microbial iron reduction in subglacial sediments. Microorganisms that carry out this metabolism are able to harness energy from the reduction of oxidised iron minerals (such as ferrihydrite and other iron oxides).

We wanted to know two things:

  1. are these microorganisms present and alive in subglacial sediment?
  2. are these microorganisms adapted to the cold conditions of these environments?

 

To achieve this, we set up experiments in which we ‘teased out’ the microorganisms that make a living from iron reduction, and measured their rates of iron reduction at two different temperatures: 4°C (blue line in the figure) and 15°C(red line). These temperatures were chosen since truly cold-loving (‘psychrophilic’) microorganisms grow optimally at temperatures below 10-15°C, whereas those that tolerate cold temperatures (‘psychrotolerant’) prefer to grow in higher temperatures.

Microorganisms that can use iron to make a living are amongst the most plausible life to exist on Mars

We found that active iron-reducing microorganisms were present in all of our subglacial sediment samples, which spanned glaciers in the High Arctic, European Alps and Antarctica, and that in almost all cases rates of iron reduction were higher at the lower temperature tested. To get an idea of which microorganisms were carrying out this process, we looked at the DNA from our experiments to identify the microbes present. We found that the microorganisms using iron in our experiments were largely the same, suggesting that the same key players are active in these types of environments worldwide. Overall our paper suggests that microbial iron reduction is widespread in subglacial environments, with implications for the availability of iron for other biogeochemical processes downstream. Subglacial environments are thought to be similar to potentially habitable environments on Mars, and microorganisms that can use iron to make a living are amongst the most plausible life to exist on the Red Planet, now and in the past. Our work therefore strengthens the hypothesis that similar environments beyond Earth could harbour this type of life.

Edited by Sophie Berger


Sophie Nixon is a postdoctoral researcher in the Geomicrobiology group at the University of Manchester. She completed her PhD in Astrobiology in 2014 at the University of Edinburgh, the subject of which was the feasibility for microbial iron reduction on Mars. One essential task in the search for life on Mars and beyond is defining the limits of life in extreme environments here on Earth. It was during her PhD that this study was carried out in collaboration with researchers at the University of Bristol, where Sophie gained her MSci in Geographical Sciences. Sophie’s research interests since joining the University of Manchester are varied, spanning the microbiological implications of anthropogenic engineering of the subsurface (e.g. nuclear waste disposal, shale gas extraction), as well as life in extreme environments and the feasibility for life beyond Earth. 

Image of the Week – Ice on Fire (Part 2)

Image of the Week – Ice on Fire (Part 2)

This week’s image looks like something out of a science fiction movie, but sometimes what we find on Earth is even more strange than what we can imagine! Where the heat of volcanoes meets the icy cold of glaciers strange and wonderful landscapes are formed. 


Location of the Kamchatka Peninsula [Credit: Encyclopaedia Britannica]

The Kamchatka Peninsula, in the far East of Russia, has the highest concentration of active volcanoes on Earth. Its climate is cold due to the Arctic winds from Siberia combined with cold sea currents passing through the Bearing Strait, meaning much of it is glaciated.

Mutnovsky is a volcano located in the south of the peninsula, which last erupted in March 2000. At the base of the volcano are numerous labyrinths of caves within ice. The caves are carved into the ice by volcanically heated water. The roof of the cave shown in our image of the week is thin enough to allow sunlight to penetrate. The light is filtered by the ice creating a magical environment inside the cave, which looks a bit like the stained glass windows of a cathedral. It is not always easy to access these caves, but when the conditions are favourable it makes for a wonderful sight!

The Mutnovsky volcano is fairly accessible for tourists, around 70 km south of the city of Petropavlovsk-Kamchatsky. Maybe this could be the holiday destination you have been searching for?

Further Reading

We have featured a number of stories about ice-volcano interaction on our blog before, read more about them here, here and here!

Edited by Sophie Berger

Image of The Week – Ice Flows!

Image of The Week – Ice Flows!

Portraying ice sheets and shelves to the general public can be tricky. They are in remote locations, meaning the majority of people will never have seen them. They also change over timescales that are often hard to represent without showing dramatic images of more unusual events such as the collapse of the Larsen B Ice Shelf.  However, an app launched in the summer at the SCAR (Scientific Committee for Antarctic Research) Open Science Conference in Kuala Lumpur set out to change this through a game. Developed by Anne Le Brocq from the University of Exeter, this game is aptly named – Ice Flows!


The game in a nutshell!

Ice Flows is a game that allows the player to control various variables of an ice shelf (floating portion of an ice sheet) environment, such as ocean temperature and snowfall, and see the changes that these cause. For example, increasing the amount of snowfall increases the ice thickness but increasing the ocean temperature causes thinning of the ice shelf. The aim of the game is to help penguins feed by altering the variables to create ice shelf conditions which give them access to the ocean. Although the game is based around penguins, importantly, it is changing the ice shelf environment that the player controls, this allows a player to investigate how changing environmental conditions affect the ice. Our Image of the week shows a still from the game, where the player has created ice conditions which allow the penguins to dive down and catch fish.

What is the educational message?

The polar regions are constantly changing and assigning these changes to either natural cycles or anthropogenic (human induced) climate change can be tricky. Ice shelves tend to only hit the news when large changes happen, such as the recent development of the Larsen C rift which is thought to be unrelated to the warming climate of the region but may still have catastrophic consequences for the ice shelf. Understanding that changes like these can sometimes be part of a natural process can seem conflicting with the many stories about changes caused by warming. That’s why ice flows is a great way to demonstrate the ways in which ice shelves can change and the various factors that can lead to these changes. And the bonus chance to do this with penguins is never going to be a bad thing!

The game allows players to visualise the transformation of ice sheet to ice shelf to iceberg. This is an especially important educational point given the confusing ways that various types of ice can be portrayed by the media; reports, even if factually correct, will often jump from sea ice to ice shelves and back (see this example). It is also common for reports to cloud the climate change narrative by connecting processes thought to be due to natural causes (such as the Larsen C rift) to a warming climate (such as this piece). This confusion is something I often see reflected in people’s understanding of the cryosphere. In my own outreach work I start by explicitly explaining the difference between ice shelves and sea ice (my work is based on ice shelves). Even so, I can usually guarantee that many people will ask me questions about sea ice at the end of my talk.

Xue Long the Snow Dragon Penguin [Credit: Ice Flows game ]

Despite the messages that it is trying to convey, the app doesn’t come across as pushing the educational side too much. There is plenty of information available but the game also has genuinely fun elements. For example, you can earn rewards and save these to upgrade your penguins to some extravagant characters (my favourite has to be Xue Long – the snow dragon penguin!) Although the focus may be drawn towards catching the fish for the penguins while you’re actually playing, it would be hard for anyone to play the game and walk away without gaining an understanding of the basic structure of an ice shelf and how various changing environmental factors can affect it.

Developing the game…

The game was developed by Anne Le Broq in collaboration with games developers Inhouse Visual and Questionable Quality, using funding from the Natural Environment Research Council. Of course, many scientific researchers were also involved to ensure that the game was as scientifically accurate as possible whilst still remaining fun to play.

A key challenge in developing the game was modelling the ice flow. In order to be used in the app, the ice flow model needed to represent scientific understanding as well as being reactive enough to allow the game to be playable. This required some compromise, as one of the scientists involved in the development, Steph Cornford (CPOM, University of Bristol), explains on the CPOM Blog:

On one hand, we wanted the model to reflect contemporary understanding well enough for students to learn about ice sheets, ice shelves, and Antarctica in particular. On the other, the game had to be playable, so that any calculations needed to be carried out quickly enough that the animation appeared smooth, and changing any of the parameters (for example, the accumulation rate) had to lead to a new steady state within seconds, to make the link between cause and effect clear.

— Steph Cornford

The resulting model works really well, creating a fun, challenging and educational game! See for yourself by downloading the free to play game from your app store, or online at www.iceflowsgame.com!

Further reading

  • Find out more about the game on the University of Exeter website or visit the game’s own website here.
  • You can read in more detail about Steph’s modelling here.

Edited by Emma Smith


Sammie Buzzard has recently submitted her PhD thesis where she has developed a model of ice shelf surface melt, focusing on the Larsen C Ice Shelf. She is based at the Centre for Polar Observation and Modelling within the University of Reading’s Department of Meteorology. She blogs about her work and PhD life in general at https://iceandicing.wordpress.com/ and tweets as @treacherousbuzz.

Image of the Week — Hidden lakes in East Antarctica !

Image of the Week — Hidden lakes in East Antarctica !

Who would have guessed that such a beautiful picture could get you interviewed for the national news?! Certainly not me! And yet, the photo of this englacial lake (a lake trapped within the ice in Antarctica), or rather science behind it, managed to capture the media attention and brought me, one of the happy co-author of this study,  on the Belgian  television… But what do we see on the picture and why is that interesting?


Where was the picture taken?

The Image of this Week shows a 4m-deep meltwater lake trapped 4 m under the surface of the Roi Baudouin Ice Shelf (a coastal area in East Antarctica). To capture this shot, a team of scientists led by Stef Lhermitte (TU Delft) and Jan Lenaerts (Utrecht University) went to the Roi Baudouin ice shelf, drilled a hole and lowered a camera down (see video 1).

Video 1 : Camera lowered into borehole to show an englacial lake 4m below the surface. [Credit: S. Lhermitte]

How was the lake formed?

In this region of East Antarctica, the katabatic winds are very persistent and come down from the centre of the ice sheet towards the coast, that is the floating ice shelf (see animation below). The effect of the winds are two-fold:

  1. They warm the surface because the temperature of the air mass increases during its descent and the katabatic winds mix the very cold layer of air right above the surface with warmer layers that lie above.
  2. They sweep the very bright snow away, revealing darker snow/ice, which absorb more solar radiation

The combination leads to more melting of the ice/snow in the grounding zone — the boundary between the ice sheet and ice shelf — , which further darkens the surface and therefore increases the amount of solar radiation absorbed, leading to more melting, etc. (This vicious circle is very similar to the ice-albedo feedback presented in this previous post).

Animation showing the processes causing the warm micro-climate on the ice shelf. [Credit: S. Lhermitte]

All the melted ice flows downstream and collects in depressions to form (sub)surface lakes. Those lakes are moving towards the ocean with the surrounding ice and are progressively buried by snowfalls to become englacial lakes. Alternatively, the meltwater can also form surface streams that drain in moulins (see video 2).

Video 2 : Meltwater streams and moulins that drain the water on the Roi Baudouin ice shelf. [Credit: S. Lhermitte]

Why does it matter ?

So far we’ve seen pretty images but you might wonder what could possibly justify an appearance in the national news… Unlike in Greenland, ice loss by surface melting has  often been considered negligible in Antarctica. Meltwater can however threaten the structural integrity of ice shelves, which act as a plug of the grounded ice from upstream. Surface melting and ponding was indeed one of the triggers of the dramatic ice shelves collapses in the past decades, in the Antarctic Peninsula . For instance, the many surfaces lakes on the surface of the Larsen Ice shelf in January 2002, fractured and weakened the ice shelf until it finally broke up (see video 3), releasing more grounded ice to the ocean than it used to do.

Of course surface ponding is not the only precondition for an ice shelf to collapse : ice shelves in the Peninsula had progressively thinned and weakened for decades, prior their disintegration. Our study suggests however that surface processes in East Antarctica are more important than previously thought, which means that this part of the continent is probably more vulnerable to climate change than previously assumed. In the future, warmer climates will intensify melt, increasing the risk to destabilise the East Antarctic ice sheet.

Video 3 : MODIS images show Larsen-B collapse between January 31 and April 13, 2002. [Credit:NASA/Goddard Space Flight Center ]

Reference/Further reading

Edited by Nanna Karlsson

Image of The Week – The Pulsating Ice Sheet!

Image of The Week – The Pulsating Ice Sheet!

During the last glacial period (~110,000-12,500 years ago) the Laurentide Ice Sheet (North America) experienced rapid, episodic, mass loss events – known as Heinrich events. These events are particularly curious as they occurred during the colder portions of the last glacial period, when we would intuitively expect large-scale mass loss during warmer times. In order to understand mass loss mechanisms from present-day ice sheets we need to understand what happened in the past. So, how can we better explain Heinrich events?


What are Heinrich Events?

During a Heinrich event large swarms of icebergs were discharged from the Laurentide Ice Sheet into the Hudson Strait and eventually into the North Atlantic Ocean. This addition of fresh water to the oceans caused a rise in sea level and a change in ocean currents and therefore climate.

We know about these events by studying glacial debris that was transported from the ice sheet into the oceans by the icebergs and eventually deposited on the ocean floor. From studying ocean-sediment records we know that Heinrich events occurred episodically during the last glacial period but not on at a regular intervals. Interestingly, when compared to temperature records from Greenland ice cores, it can be seen that the timing of Heinrich events coincides with the cold phases of Dansgaard–Oeschger (DO) cycles – rapid temperature fluctuations which occurred during the last glacial period (see our previous post).

the timing of Heinrich events coincides with the cold phases of Dansgaard–Oeschger (DO) cycles

What do we think causes them?

A new study, published last month in Nature, uses numerical modelling to show how pulses of warm ocean water could trigger Heinrich events. Our image of the week (Figure 1) illustrates the proposed mechanism for one event cycle:

  • a) Ice sheet at it’s full extent, grounded on a sill (raised portion of the bed, at the mouth of the Hudson Strait). Notice the sill is around 300m below sea level at this time.
  • b) A pulse of sub-surface water (purple) warms by a few degrees, encouraging iceberg calving at the glacier front and causing the ice begin to retreat from the sill.
  • c) As the ice retreats, it becomes unstable due to an inwards sloping bed (see our previous post on MISI). This leads to sudden rapid retreat of the ice – characteristic of Heinrich events.
  • d) Due to ice loss and thus less mass depressing the bed, the bed will slowly rise (Glacial Isostatic Adjustment), eventually the sill has risen to a level which cuts off the warmer water from the ice front and the ice can slowly advance again.

Once the ice has advanced back to it’s maximum extent (a) it will slowly depress the bed again, allowing deeper, warmer water to reach the ice front and the whole cycle repeats!

The authors of this study used this model to simulate Heinrich events over the last glacial period and were able to accurately predict the timing of Heinrich events, as known from ocean sediment records. Check out this video to see the model in action!!

Why is it important?

This study shows that the proposed mechanism probably controlled the onset of rapid mass-loss Heinrich events in the past and more generally that such mechanisms can cause the rapid retreat of marine terminating glaciers. This is important as it adds to our understanding of the stability (or instability) of present day marine terminating glaciers – such as the West Antarctic Ice Sheet! If such rapid mass loss happened regularly in the past we need to know if and how it might happen in the future!

such mechanisms can cause the rapid retreat of marine terminating glaciers.


Check out the full study and the news article summarising the findings here:

Image of the Week — The ice blue eye of the Arctic

Image of the Week — The ice blue eye of the Arctic

Positive feedback” is a term that regularly pops up when talking about climate change. It does not mean good news, but rather that climate change causes a phenomenon which it turns exacerbates climate change. The image of this week shows a beautiful melt pond in the Arctic sea ice, which is an example of such positive feedback.


What is a melt pond?

The Arctic sea ice is typically non-smooth, and covered in snow. When, after the long polar night, the sun shines again on the sea ice, a series of events happen (e.g. Fetterer and Untersteiner, 1998):

  • the snow layer melts;

  • the melted snow collects in depressions at the surface of the sea ice to form ponds;

  • these ponds of melted water are darker than the surrounding ice, i.e. they have a lower albedo. As a result they absorb more heat from the Sun, which melts more ice and deepens the pond. Melt ponds are typically 5 to 10 m wide and 15 to 50 cm deep (Perovich et al., 2009);

  • eventually, the water from the ponds ends up in the ocean: either by percolation through the whole sea-ice column or because the bottom of the pond reaches the ocean. Sometimes, it can also simply refreeze, as the air temperatures drop again (Polashenski et al., 2012).

Melt ponds cover 50-60% of the Arctic sea ice each summer (Eicken et al., 2004), and up to 90% of the first year ice (Perovich al., 2011). How do we know these percentages? Mostly, thanks to satellites.

Monitoring melt ponds by satellites

Like most phenomena that we discuss on this blog, continuous in-situ measurements are not feasible at the scale of the whole Arctic, so scientists rely on satellites instead. For melt ponds, spectro-radiometer data are used (Rösel et al., 2012). These measure the surface reflectance of the Earth i.e. the proportion of energy reflected by the surface for wavelengths in the visible and infrared (0.4 to 14.4 μm). The idea is that different types of surfaces reflect the sunlight differently, and we can use these data to then map the types of surfaces over a region.

In particular for the Arctic, sea ice, open ocean and any stage in-between all reflect the sunlight differently (i.e. have different albedos). The way that the albedo changes with the wavelength is also different for each surface, which is why radiometer measurements are taken for a range of wavelengths. With these measurements, not only can we locate the melt ponds in the Arctic, but even assess how mature the pond is (i.e. how long ago it formed) and how deep it extends. These values are key for climate change predictions.

Fig. 2: Melt pond seen by a camera below the sea ice. (The pond is the lighter area) [Credit: NOAA’s climate.gov]

Melt ponds and the climate

Let’s come back to the positive feedback mentioned in the introduction. Solar radiation and warm air temperature create melt ponds. The darker melt ponds have a higher albedo than the white sea ice, so they absorb more heat, and further warm our climate. This extra heat is also transferred to the ocean, so melt pond-covered sea ice melts three times more from below than bare ice (Flocco et al., 2012). This vicious circle heat – less sea ice – more heat absorbed – even less sea ice…, is called the ice-albedo feedback. It is one of the processes responsible for the polar amplification of global warming, i.e. the fact that poles warm way faster than the rest of the world (see also this post for more explanation).

The ice-albedo feedback is one of the processes responsible for the polar amplification of global warming

But it’s not all doom and gloom. For one thing, melt ponds are associated with algae bloom. The sun light can penetrate deeper through the ocean under a melt pond than under bare ice (see Fig. 2), which means that life can develop more easily. And now that we understand better how melt ponds form, and how much area they cover in the Arctic, efforts are being made to include more realistic sea-ice properties and pond parametrisation in climate models (e.g. Holland et al., 2012). That way, we can study more precisely their impact on future climate, and the demise of the Arctic sea ice.

Edited by Sophie Berger

Further reading

Image of the Week – Icelandic glaciers monitored from space!

Image of the Week – Icelandic glaciers monitored from space!

Located in the North Atlantic Ocean, just south of the polar circle, Iceland is a highly fascinating land. Covered by some of the largest glaciers in Europe and hosting active volcanoes, geothermal sites and subglacial lakes, it is extremely dynamic in nature and ever changing. With this Image of the Week we will tell you a bit about the changing ice caps of Iceland and how we can monitor them from space!


Icelandic ice caps since the mid-1990s

Iceland enjoys a mild and moist climate because of the relatively warm and saline Irminger current transporting heat to its southern coast, although the cold East Greenland and East Icelandic currents may cause sea ice to form to the north. Iceland’s ice caps, which receive abundant precipitation from North Atlantic cyclones, cover about 11% of the land, and contain ~3600 km2 of ice. If they completely melted they would contribute 1 cm to Sea Level Rise (SLR).

In the period 1995-2010, Icelandic glaciers shrank every year and lost mass at an average rate of 9.5±1.5 Gton a-1 – generally reflecting higher summer temperatures and longer melting seasons than in the early 1990s (Björnsson et al., 2013). Importantly, in recent decades Iceland has been the second largest source of glacier meltwater to the North Atlantic after Greenland and its peripheral glaciers. Furthermore, surge-type outlet glaciers – which have unpredictable dynamics – are present in all Icelandic ice caps and represent as much as 75% of the area of Vatnajökull (Bjornsson et al., 2003), the largest ice cap in Europe by volume. Therefore, it is important to continuously monitor Icelandic ice caps (>90% of the whole glaciated area) at high spatial resolution. Glaciological field surveys can yield accurate measurements and are routinely performed in Iceland on all ice caps and most glaciers. However, it is not always feasible to use field methods, depending on the remoteness and size of the glacier (e.g. several glaciers and ice caps in the Arctic). Continuous monitoring of such hardly accessible areas can be achieved from space at high spatial resolution.

Continuous health check from space

Since 2010, the ESA CryoSat-2 (CS2) mission has been fundamental in retrieving ice elevation data over glacial terrain characterised by complex topography and steep slopes – notoriously hard to monitor via satellite. CS2’s radar altimeter provides the elevation of the Point-Of-Closest-Approach (POCA) – the point at the surface closest to the satellite on a straight line – every ~400 m along the flight track. The main novelty of this mission is the use of a second antenna, which allows the use of interferometry across-track to accurately infer the location of a surface reflection in presence of a slope (read more about it here). Additionally, a new and exciting application of CS2 interferometric capabilities is that we can exploit the echos after the POCA, i.e. the reflections coming from the sloping surface moments after the first one. This approach generates a swath of elevations every ~400 m and provides up to two orders of magnitude more elevation data than with conventional POCA processing (Fig. 2; Gray et al., 2013, Foresta et al., 2016).

Since 2010, the ESA CryoSat-2 (CS2) mission has been fundamental in retrieving ice elevation data

Figure 2: Example of the improved elevation data using CS2 swath-processing. CS2 swath data (colors) and conventional (circles) heights over the Austfonna ice cap (Svalbard) for two satellite passes. Swath processing delivers up to two orders of magnitude more elevation data. [Credit: Dr. N. Gourmelen,University of Edinburgh, School of GeoSciences]

This rich dataset can be used to generate maps of surface elevation change rates at sub-kilometer resolution (Figs. 1 and 3). These maps show extensive thinning of up to -10 m a-1 in marginal areas of Iceland’s ice caps, while patterns of change are more variable in their interior. Fig. 3 shows the difference in spatial coverage between the POCA and Swath approaches, with the former sampling preferentially along topographic highs (see for example the Langjökull ice cap in Fig. 3). Using these high resolution maps, it is possible to independently infer the mass balance of each ice cap purely from satellite altimetry data. Based on CS2 swath-processed elevations, between glaciological years 2010/11 and 2014/15 Iceland has lost mass at an average rate of 5.8±0.7 Gton a-1 contributing 0.016±0.002 mm a-1 to SLR (Foresta et al., 2016). The rate of mass loss is ~40% less than during the preceding 15 years, partly caused by Vatnajökull (63% of the total mass loss) having had positive mass balance during the glaciological year 2014/15 due to anomalously high precipitation. Langjökull, with widespread thinning up to the ice divide (Figs. 1 and 3), is the fastest changing ice cap in terms of mass loss per unit area.

between glaciological years 2010/11 and 2014/15 Iceland has lost mass at an average rate of 5.8±0.7 Gton a-1 contributing 0.016±0.002 mm a-1 to SLR

Beside estimating mass change at the ice cap scale, the novel swath approach demonstrates the capability to observe glaciological processes at a sub-catchment scale. Different accumulation and thinning patterns over Vatnajökull and Langjökull, for example, are directly related to past surges or subglacial volcanic eruptions, some of which happened decades ago. Their long term lingering effects on the ice cap topography are now visible from space and as the satellite data record extends we will be able to gain an increased understanding of how these effects evolve over time.

Figure 3 – Comparison between swath-processed (Swath) and conventional (POCA) surface elevation change rates over the six largest ice caps in Iceland, representing 90% of the glaciated area. V (Vatnajökull), L (Langjökull),H(Hofsjökull),M(Mýrdalsjökull), D (Drangajökull), and E (Eyjafjallajökull). The inset shows the location of individual elevation measurements by using Swath and POCA approaches over Langjökull. [Credit: After Foresta et al. (2016).]

Edited by Emma Smith


Luca Foresta is a PhD student in the Glaciology and Cryosphere Research Group at the University of Edinburgh (@EdinGlaciology), and his research focuses on improving CryoSat-2 processing as well as exploiting swath-processed CryoSat-2 data to quantify surface, volume and mass changes over ice caps.

 

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: