CR
Cryospheric Sciences

Patagonia

Image of the week – Micro-organisms on Ice!

Image of the week – Micro-organisms on Ice!

The cold icy surface of a glacier doesn’t seem like an environment where life should exist, but if you look closely you may be surprised! Glaciers are not only locations studied by glaciologists and physical scientists, but are also of great interest to microbiologists and ecologists. In fact, understanding the interaction between ice and microbiology is essential to fully understand the glacier system!


Why study micro-organisms on glaciers?

Micro-plants, micro-animals and bacteria live and reproduce in cryoconite ecosystems on the surface of glaciers. Cryoconite is a dark coloured material (Fig. 2) found at the bottom of cylindrical water-filled melt holes (cryoconite holes) on a glacier surface; it consists of dust and mineral powders transported by the wind, and micro-organisms. Cryoconite holes are formed as the dark coloured material causes localised melting, due to reduced albedo (ability of a surface to reflect solar energy).

Figure 2: Example of a Cryoconite hole filled with dark cryoconite material (markers are 10×10 cm) [Credit: Tommaso Santagata – La Venta Esplorazioni Geografiche]

Because organisms in cryoconite thrive in extreme conditions, they are very unique and interesting to study. Information about their genetic makeup and chemical structure can help to inform, for example, medical and pharmaceutical sciences. Currently, however, information on their community structure is still limited.

Cryoconite ecosystems are very isolated and must work together to survive and thrive. Some micro-organisms (e.g. micro-algae) can photosynthesise and are able to live autonomously inside cryoconite holes using atmospheric carbon dioxide, sunlight, water and chlorophyll. By this same mechanism, they can find all the molecules essential for their vital and structural needs and consequently they generate most of the molecules necessary for all other living things. For example, the waste product of photosynthesis, oxygen, is essential for the survival of all organisms living in aerobiosis in these communities. Due to their key role in the ecosystem, the micro-algae are known as “primary producers”.

As around 70% of the earth is covered in water, which is colonised by micro-algae, studying the way they survive in extreme conditions and how they contribute to the ecosystem is of global importance – especially at this time of climate change.

The diversity of highly active bacterial communities in cryoconite holes makes them the most biologically active habitats within glacial ecosystems.

Data collections – Six days on THE glacier

The Perito Moreno glacier (Fig. 3) is known as one of the most important tourist attraction in Argentinian Patagonia (see our previous IOW post). Each day, hundreds of people observe the impressive front of this glacier and wait to see ice detachments and hear the loud sound of it’s impacts in the water of Lake Argentino. The glacier takes it’s name from the explorer Francisco Moreno, who studied the Patagonian region in the 19th century. The glacier is more than 30 km in length and an area of about 250 km2, Perito Moreno is one of the main outlet glaciers of Hielo Patagonico Sur (southern Patagonia icefield).

Figure 3: Aerial view of the Perito Moreno
[Credit : Tommaso Santagata – La Venta Esplorazioni Geografiche]

In April 2017, after several missions to the Greenland Ice Sheet to study extremophilic micro-organisms (organism that thrive in extreme environments) of ice, a team of Italian and French scientists organised a scientific expedition to study the microbiology of Perito Moreno. The expedition was organised by La Venta and Spélé’Ice and included researchers from several French and Italian Universities (see below for full list)

Perito Moreno is very well known, especially to the La Venta team, who have been organising scientific expeditions in Patagonia since 1991. The microbiological research objectives of this mission were to study the micro-organisms that live on the surface of Perito Moreno and compare them to results obtained in the other polar, sub-polar and alpine regions. The multi-disciplinary research team were able to set up a complex field laboratory, which included a microscope and an innovative small tool size capable of DNA sequencing. This meant that samples could be analysed immediately after their extraction from the ice (Fig. 1).

Getting all the equipment and personnel to achieve this expedition onto the ice was not an easy task. The team and their equipment were transported by boat to a site near the front of the glacier. Equipment then needed to be transported to the Buscaini Refugee, a shelter used as a base-camp by the team (Fig. 4). This took two trips, on foot, of about 7 hours (12 km of trail along the lateral moraine and the ice of the glacier with very heavy backpacks) – not an easy start! Luckily this hardship was somewhat mitigated by the absence of extreme cold, in fact, abnormally hot weather tallowed the team to move and work in t-shirts – not bad!

Figure 4: Walking into the field site along the ice of Perito Moreno – part of the 12km of trail to the Buscaini Refugee shelter
[Credit: Alessio Romeo – La Venta Esplorazioni Geografiche]

Thanks to these favourable weather conditions, all the goals were achieved in the short amount of time the team were allowed to camp on the glacier (special permission is needed from the national park to do this). During the five days of activity, many samples were taken and sequenced directly at the camp by the researches. Other important goals, such as morphological comparisons and measurements of the velocity of the glacier through the use of GPS, laser scanning and unmanned aerial vehicles were achieved by another team of researchers (stay tuned for another blog post about this!).

Universities and research institutes involved: University Bicocca of Milan – Italy, University of Milano – Italy, Sciences of the Earth A.Desio – Italy, Natural History Museum of Paris – France, University Diderot of Paris – France, University of Florence – Sciences of the Earth – Italy, University of Bologna – Italy.

Further Reading

Edited by Emma Smith


Tommaso Santagata is a survey technician and geology student at the University of Modena and Reggio Emilia. As speleologist and member of the Italian association La Venta Esplorazioni Geografiche, he carries out research projects on glaciers using UAV’s, terrestrial laser scanning and 3D photogrammetry techniques to study the ice caves of Patagonia, the in-cave glacier of the Cenote Abyss (Dolomiti Mountains, Italy), the moulins of Gorner Glacier (Switzerland) and other underground environments as the lava tunnels of Mount Etna. He tweets as @tommysgeo

Image of the Week – Inside a Patagonian Glacier

Image of the Week – Inside a Patagonian Glacier

Chilean Patagonia hosts many of the most inhospitable glaciers on the planet – in areas of extreme rainfall and strong winds. These glaciers are also home to some of the most spectacular glacier caves on Earth, with dazzlingly blue ice and huge vertical shafts (moulins). These caves give us access to the heart of the glaciers and provide an opportunity to study the microbiology and water drainage in these areas; in particular how this is changing in relation to climate variations. Our image of this week shows the entrance to one of these caves on Grey Glacier in the Torres del Paine National Park.


“Glacier karstification”

Glaciers in Patagonia are “temperate”, which means that the ice temperature is close to the melting point. As glacial melt-water runs over the surface of this “warm” ice it can easily carve features into ice, which are similar to those formed by limestone dissolution in karstic landscapes. Hence, this phenomenon is called Glacier karstification. It is this process that forms many of the caves and sinkholes that are typically found on temperate glaciers.

From the morphological (structural) point of view, glaciers actually behave like karstic areas, which is rather interesting for a speleologist (scientific cave explorer). Besides caves and sinkholes one often finds other shapes similar to karstic landscapes. For example, small depressions on the ice surface formed by water gathering in puddles, whose appearance resembles small kartisic basins (depressions). Of all the features formed by glacier karstification glacier caves are the most important from a glaciological perspective.

Glacier caves can be divided in two main categories:

  • Contact caves – formed between the glacier and bed underneath; or at the contact between extremely cold and temperate ice by sublimation processes (Fig. 2a)
  • Englacial caves – form inside the glacier – as shown in our image of the week today. Most of these caves are formed by runoff, where water enters the glacier through a moulin (vertical shaft) and are the most interesting for exploration and research (Fig. 2b)
Figure 2: Two different types of caves explored on the Grey Glacier. A- Contact formed between the glacier bed and overlying ice [Credit: Tommaso Santagata]. B- Entrance to an englacial cave [Credit: Alessio Romeo/La Venta].

Figure 2: Two different types of caves explored on the Grey Glacier. A- Contact formed between the glacier bed and overlying ice [Credit: Tommaso Santagata]. B- Entrance to an englacial cave [Credit: Alessio Romeo/La Venta].

Exploring the moulins of a Patagonian glacier

Located in the Torres del Paine National Park area (see Fig. 3), the Grey glacier was first explored in 2004 by the association La Venta Esplorazioni Geografiche. In April of this year, a team of speleologists went back to the glacier to survey the evolution of the glacier.

Figure 3: Map of Grey Glacier with survey site of 2004 and 2016 indicated by red dot [Adapted from: Instituto Geografico Militar de Chile ]

Figure 3: Map of Grey Glacier with survey site of 2004 and 2016 indicated by red dot [Adapted from: Instituto Geografico Militar de Chile ]

Grey glacier begins in the Andes and flows down to it’s terminus in Grey Lake, where it has three “tongues” which float out into the water (Fig, 3). As with many other glaciers, Grey Glacier is retreating, though mass loss is less catastrophic than some of Patagonia’s other glaciers (such as the Upsala – which is glaciologically very similar to the Grey Glacier). Grey Glacier has retreated by about 6 km over the last 20 years and has thinned by an average of 40 m since 1970.

In 2004 research was concentrated on the tongue at the east of this Grey Glacier (Fig. 3 – red dot), which is characterised by a surface drainage network with small-size surface channels that run into wide moulin shafts, burying into the glacier. In this latest expedition, the same area was re-examined to see how it had changed in the last 12 years.

Several moulins were explored during the 2016 expedition, including a shaft of more than 90 m deep and some horizontal contact caves (Fig 2). The glacier has clearly retreated and the surface has lowered a lot from the 2004 expedition. The extent of the thinning in recent years can be easily measured on the wall of the mountains around the glacier. Interestingly the entrance to the caves which were explored in 2004 and in 2016 was in the same position as 12 years ago, although the reasons for this are not yet clear.

The entrance of two of the main moulins which were explored were also mapped in 3D using photogrammetry techniques (see video below). The 3D models produced help us to better understand the shape and size of these caves and to study their evolution by repeating this mapping in the future. For more information about the outcome of this expedition, please follow the Inside the Glaciers Blog.

 

 

Further Reading:

Books on the subject:

  • Caves of the Sky: A Journey in the Heart of Glaciers, 2004, Badino G., De Vivo A., Piccini L.
  • Encyclopaedia of Caves and Karst Science, 2004, Editor: Gunn J.

Edited by Emma Smith and Sophie Berger


tom_picTommaso Santagata is a survey technician and geology student at the University of Modena and Reggio Emilia. As speleologist and member of the Italian association La Venta Esplorazioni Geografiche, he carries out research projects on glaciers using UAV’s, terrestrial laser scanning and 3D photogrammetry techniques to study the ice caves of Patagonia, the in-cave glacier of the Cenote Abyss (Dolomiti Mountains, Italy), the moulins of Gorner Glacier (Switzerland) and other underground environments as the lava tunnels of Mount Etna. He tweets as @tommysgeo

Image of The Week – That’s a Damn Fine Ice Dam!

Image of The Week – That’s a Damn Fine Ice Dam!

With today’s image of the week we want to transport you to Patagonia to look at a unique fresh-water calving glacier –  Perito Moreno in Argentina. This is a hot topic at the moment as the glacier did something rather unusual yesterday, read on to find out more…..

This large glacier (Fig 2, highlighted red) flows down a valley, calving into the southwestern arm of Lago Argentino  at its terminus. However, at times the glacier front advances far enough to connect with land on the opposite bank of Lago Argentino. This cuts off the flow of water from Brazo Rico (Fig 1., left), into Lago Argentino (Fig 1., right) acting as an ice dam.

Figure 2: Landsat 5 image (Mar. 21, 2001) showing Glacier Perito Moreno (red) and the surrounding area. Adapted from Naruse and Skvarca, 2012 .

Figure 2: Landsat 5 image (Mar. 21, 2001) showing Glacier Perito Moreno (red) and the surrounding area. Adapted from Naruse and Skvarca, 2012 .

The ice dam can reach hundreds of meters in height and can cause the water level in Brazo Rico to rise up to 30 m above that of Lago Argentino. Eventually the dam collapses, accompanied by rapid collapse of the ice front and the water rushes through, equalising water levels. The glacier then continues to advance and the cycle repeats.

These collapse events appear to happen every few years, with the last event happening YESTERDAY – March 10th 2016 (see the video link). The length of a cycle is very unpredictable and it is unclear exactly what is controlling the ice dynamics in this region. Naruse and Skvarca, 2012 made a comprehensive study of the 2003-2004 ice dam formation and collapse but more information is needed to fully understand this complex glacier.

Edited by Sophie Berger and Nanna Karlsson