Imaggeo on Mondays: Sediments make the colour

Imaggeo on Mondays: Sediments make the colour

Earth is spectacularly beautiful, especially when seen from a bird’s eye view. This image, of a sweeping pattern made by a river in Iceland is testimony to it.

The picture shows river Leirá which drains sediment-loaded glacial water from the Myrdalsjökull glacier in Iceland. Myrdalsjökull glacier covers Katla, one of Iceland’s most active and ice-covered volcanoes.

A high sediment load (the suspended particles which are transported in river water) is typical for these glacial rivers and is visible as the fast-flowing glacial river (on the right of this image) appears light brown in colour. The sediment is gradually lost in the labyrinth of small lakes and narrow, crooked connections between lakes as can be seen as a gradual change in colour to dark blue.

The sediment load, height of the water  and chemistry of this and other glacial rivers are measured partly in real-time by the Icelandic Meteorological Office. This is done for research purposes and in order to detect floods from subglacial lakes that travel up to several tens of kilometers beneath the glacier before they reach a glacial river.

These glacial outburst floods do not only threaten people, livestock and property, but also infrastructure such as Route 1, a circular, national road which runs around the island. They occur regularly due to volcanic activity or localized geothermal melting on the volcano, creating a need for an effective early-warning system.

Advances in the last years include the usage of GPS instruments on top of a subglacial lake and the flood path in order to increase the early-warning for these floods. In 2015, the GPS network, gave scientists on duty at the Icelandic Meteorological Office 3.5 days of warning before one of the largest floods from western Vatnajökull emerged from beneath the ice.

The peak discharge exceeded 2000 m3/s,  which is comparable to an increase in discharge from that of the Thames to that of the Rhine.  This flood was also pioneeringly monitored with clusters of seismometers, so called arrays (from University College Dublin & Dublin Institute for Advanced Studies, Ireland), that enabled an early-warning of at least 20 hours and allowed to track the flood front merely using the ground vibrations it excited. The flood propagated under the glacier at a speed of around 2 km/h; so assuming you can keep up the speed over nearly a day you can escape the flood by walking while it is moving beneath the glacier.

Related publications about the tracking of these subglacial floods will emerge in the published literature soon (real time update available at

By Eva Eibl, researcher at the Dublin Institute for Advanced Studies.

Thanks go to who organised this trip.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at


Imaggeo on Mondays: Sneaking up from above

Imaggeo on Mondays: Sneaking up from above

Take some ice, mix in some rock, snow and maybe a little mud and the result is a rock glacier. Unlike ice glaciers (the ones we are most familiar with), rock glaciers have very little ice at the surface. Looking at today’s featured image, you’d be forgiven for thinking the Morenas Coloradas rock glacier wasn’t a glacier at all. But appearances can be misleading; as Jan Blöthe (a researcher at the University of Bonn) explains in today’s post.

The picture shows the Morenas Coloradas rock glacier, a pivotal example of actively creeping permafrost (ground that remains frozen for periods longer than two consecutive years) in the dry central Andes of Argentina. The rock glacier is located in the “Cordon del Plata” range, some 50 km east of the city of Mendoza.

The rock glacier fills the entire valley and slowly creeps downslope creating impressive lobes and tongues with steep fronts. With more than 4 km length, the Morenas Coloradas is one of the largest rock glaciers of the central Andes.

Taken from a drone, the picture looks straight up the rock glacier into the main amphitheatre-like valley formed by glacial erosion located at ~4500 m.a.s.l. From there, large amounts of loose debris are moved down the valley at speeds on the order of a few meters per year. The creeping process forms tongues of material that override each other, producing the characteristic surface with steps, ridges and furrows.

The central Andes of Argentina are semi-arid, receiving less than 500 mm of precipitation per year, mainly falling as snow during the winter. The region is famous for its wines, which are grow in the dry Andean foreland that is heavily dependent on meltwater from the mountains. How much of this meltwater is actually stored in ice-rich permafrost landforms is unknown.

As opposed to ice glaciers, rock glaciers show a delayed reaction to a changing climate, as large amounts of debris cover the ground ice, isolating it from rising air temperatures. With large areas located above the lower altitudinal limit of mountain permafrost of ~3600 m.a.s.l., the central Andes of Argentina might store significant amounts of water in the subsurface.

Using mainly near-surface geophysics, our research tries to quantify the water storage capacities in the very abundant and impressive rock glaciers of the region. The Morenas Coloradas rock glacier is of special importance in this regard, as first geophysical measurements date back to the 1980s. Since then, active layer thickness has dramatically increased in the lower parts of the rock glacier, indicating that also the ground ice of the permafrost domain of the central Andes is suffering under the currently warming climate.

A final remark: Thanks goes to the entire team of this research project, namely Christian Halla, Estefania Bottegal, Joachim Götz, Lothar Schrott, Dario Trombotto, Floreana Miesen, Lorenz Banzer, Julius Isigkeit, Henning Clemens, and Thorsten Höser.

By Jan Blöthe, University of Bonn, Germany

Imaggeo on Mondays: Erosion

Imaggeo on Mondays: Erosion

In mountainous regions precipitation – be that in the form of rain, hail or snow, for example – drives erosion, which means it plays an important part in shaping the way the landscape looks. Precipitation can directly wear away at hillsides and creates streams and rivers, which leave their mark on the scenery by cutting and calving their way through it.

Take for instance the hills in the arid coastal region of Pisco Valley, in Peru (pictured above). Contrary to what you might think having first looked at the photograph, very little erosion of rock happens here. The solid rock which makes up the undulating hills is a hard-wearing grantic rock (not dissimilar to the stone you might covet for your kitchen countertops).

Over time, wind-blown sediments have blanketed the granites. Loesses, as the deposits are known, are very soft and range between 20 and 60 cm in thickness. The channels which slice the hillside are carved into the loesses, not the granites which lie below.

Rain is such a rare thing in these parts that soil barely forms (Norton et al., 2015) and it’s impossible for plants to grow on the soft substrate, leaving the slopes exposed to the elements. When the infrequent rains do come, small scale gullies, only a few centimetres deep cut their way into the sediments, taking away material loosened by torrential rainfalls at high speeds.


Kevin P. Norton, Peter Molnar, Fritz Schlunegger, The role of climate-driven chemical weathering on soil production, Geomorphology, Volume 204, 1 January 2014, Pages 510-517, ISSN 0169-555X,

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at


Imaggeo on Mondays: Tones of sand

Tones of Sand

With rocks dating as far back as the Precambrian, mountain building events, violent volcanic eruptions and being covered, on and off, by shallow seas, Death Valley’s geological history is long and complex.

Back in the Cenozoic (65 to 30 million years ago), following a turbulent period which saw the eruption of volcanoes (which in time would form the Sierra Nevada of California) and regional uplift, Death Valley was a peaceful place. There was no deposition of sediments, nor emplacement of igneous rocks. The valley was being eroded, slowly.

Fast forward a few thousand years, to the Miocene (ca. 27 million years ago) and all that changed. New volcanic eruptions drove the onset of a major extensional event, which saw basins and ranges develop into Death Valley as we know it today.

The tectonics of the region were also complex: the North American plate was riding up and over the Pacific plate, but around the same time as the extension started in the basin, the spreading centre of the Pacific plate intersected with the Fallon Plate, splitting it in half. The northern section became the Juan de Fuca plate and the San Andreas Fault was created between the remnants of the subduction zone.

The Panamint Range – a fault-block mountain range on the edge of the Mojave Desert – formed as a result of the powerful tectonic events. Initially, it rode over and piggy backed on top of The Black Mountains, before sliding towards the west.  As the mountain ranges slid apart, the valleys lost height too and started receiving sediment.

The sediment influx happens to this day, as evidenced in today’s Imaggeo on Monday’s photograph, taken by Marc Girons Lopez, a hydrologist at Uppsala University (Sweden).

“The photograph was taken from Dante’s View viewpoint terrace and shows the Death Valley on the foreground and the Panamint Range on the background,” describes Marc.

At present, a series of alluvial fans drain the Panamint Range, forming triangle-shaped deposits of gravel, sand and silt. These fans are formed through the deposition of sediments eroded from the Panamint Range during flash flood events.

Marc says that “the colour of the sand forming the alluvial fans relates to their age; the clearer the tones the younger their age.”

The salt flats in the foreground, which are covered in salt and other minerals, are the remnants of Lake Manly, a landlocked lake system which drained to no other bodies of water such as rivers or oceans. The lake was present during the Pleistocene era (2.85 million years ago) and slowly evaporated as the region progressively desertified. The evaporitic salts have been exploited in modern times.


If you pre-register for the 2017 General Assembly (Vienna, 22 – 28 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at


Get every new post on this blog delivered to your Inbox.

Join other followers: